A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of a Machine Learning Algorithm to Classify Ultrasonic Transducer Misalignment and Deployment Using TinyML. | LitMetric

AI Article Synopsis

  • Researchers investigated how to detect and correct misalignment in ultrasonic power transfer systems for implanted and wearable medical devices due to body movement.
  • Various machine learning algorithms, including autoencoder, CNN, and NN, were tested to classify misalignment from over 700 collected ultrasonic signal data.
  • The best-performing algorithm was implemented on a TinyML device, achieving over 99% accuracy in real-time signal classification, showing potential for improved power delivery in ultrasonic devices using beam-steering technology.

Article Abstract

The challenge for ultrasonic (US) power transfer systems, in implanted/wearable medical devices, is to determine when misalignment occurs (e.g., due to body motion) and apply directional correction accordingly. In this study, a number of machine learning algorithms were evaluated to classify US transducer misalignment, based on data signal transmissions between the transmitter and receiver. Over seven hundred US signals were acquired across a range of transducer misalignments. Signal envelopes and spectrograms were used to train and evaluate machine learning (ML) algorithms, classifying misalignment extent. The algorithms included an autoencoder, convolutional neural network (CNN) and neural network (NN). The best performing algorithm, was deployed onto a TinyML device for evaluation. Such systems exploit low power microcontrollers developed specifically around edge device applications, where algorithms were configured to run on low power, restricted memory systems. TensorFlow Lite and Edge Impulse, were used to deploy trained models onto the edge device, to classify signals according to transducer misalignment extent. TinyML deployment, demonstrated near real-time (<350 ms) signal classification achieving accuracies > 99%. This opens the possibility to apply such ML alignment algorithms to US arrays (capacitive micro-machined ultrasonic transducer (CMUT), piezoelectric micro-machined ultrasonic transducer (PMUT) devices) capable of beam-steering, significantly enhancing power delivery in implanted and body worn systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10818582PMC
http://dx.doi.org/10.3390/s24020560DOI Listing

Publication Analysis

Top Keywords

machine learning
12
ultrasonic transducer
12
transducer misalignment
12
learning algorithms
8
misalignment extent
8
neural network
8
low power
8
edge device
8
micro-machined ultrasonic
8
transducer
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!