Current road extraction models from remote sensing images based on deep learning are computationally demanding and memory-intensive because of their high model complexity, making them impractical for mobile devices. This study aimed to develop a lightweight and accurate road extraction model, called Road-MobileSeg, to address the problem of automatically extracting roads from remote sensing images on mobile devices. The Road-MobileFormer was designed as the backbone structure of Road-MobileSeg. In the Road-MobileFormer, the Coordinate Attention Module was incorporated to encode both channel relationships and long-range dependencies with precise position information for the purpose of enhancing the accuracy of road extraction. Additionally, the Micro Token Pyramid Module was introduced to decrease the number of parameters and computations required by the model, rendering it more lightweight. Moreover, three model structures, namely Road-MobileSeg-Tiny, Road-MobileSeg-Small, and Road-MobileSeg-Base, which share a common foundational structure but differ in the quantity of parameters and computations, were developed. These models varied in complexity and were available for use on mobile devices with different memory capacities and computing power. The experimental results demonstrate that the proposed models outperform the compared typical models in terms of accuracy, lightweight structure, and latency and achieve high accuracy and low latency on mobile devices. This indicates that the models that integrate with the Coordinate Attention Module and the Micro Token Pyramid Module surpass the limitations of current research and are suitable for road extraction from remote sensing images on mobile devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10819684 | PMC |
http://dx.doi.org/10.3390/s24020531 | DOI Listing |
Nat Commun
January 2025
Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
Vibration sensors are integral to a multitude of engineering applications, yet the development of low-cost, easily assembled devices remains a formidable challenge. This study presents a highly sensitive flexible vibration sensor, based on the piezoresistive effect, tailored for the detection of high-dynamic-range vibrations and accelerations. The sensor's design incorporates a polylactic acid (PLA) housing with cavities and spherical recesses, a polydimethylsiloxane (PDMS) membrane, and electrodes that are positioned above.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Automation, "Dunarea de Jos" University of Galati, 800008 Galati, Romania.
This paper deals with a "digital twin" (DT) approach for processing, reprocessing, and scrapping (P/R/S) technology running on a modular production system (MPS) assisted by a mobile cyber-physical robotic system (MCPRS). The main hardware architecture consists of four line-shaped workstations (WSs), a wheeled mobile robot (WMR) equipped with a robotic manipulator (RM) and a mobile visual servoing system (MVSS) mounted on the end effector. The system architecture integrates a hierarchical control system where each of the four WSs, in the MPS, is controlled by a Programable Logic Controller (PLC), all connected via Profibus DP to a central PLC.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Computer Engineering, Dongseo University, Busan 47011, Republic of Korea.
Choosing nutritious foods is essential for daily health, but finding recipes that match available ingredients and dietary preferences can be challenging. Traditional recommendation methods often lack personalization and accurate ingredient recognition. Personalized systems address this by integrating user preferences, dietary needs, and ingredient availability.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Artifcial Intelligence, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
Sensor-based gesture recognition on mobile devices is critical to human-computer interaction, enabling intuitive user input for various applications. However, current approaches often rely on server-based retraining whenever new gestures are introduced, incurring substantial energy consumption and latency due to frequent data transmission. To address these limitations, we present the first on-device continual learning framework for gesture recognition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!