Improvement of wireless power transfer (WPT) systems is necessary to tackle issues of power transfer efficiency, high costs due to sensor and communication requirements between the transmitter (Tx) and receiver (Rx), and maintenance problems. Analytical techniques and hardware-based synchronization research for Rx-sensorless WPT may not always have been available or accurate. To address these limitations, researchers have recently employed machine learning (ML) to improve efficiency and accuracy. The objective of this work was to replace Tx-Rx communication with ML, utilizing Tx-side parameters to predict the load and coupling coefficients on an LC-LC tuned WPT system. Based on current and voltage features collected on the Tx-side for various load and coupling coefficient values, we developed two models for each load and coupling prediction. This study demonstrated that the extra trees regressor effectively predicted the characteristics of LC-LC tuned WPT systems, with coefficients of determination of 0.967 and 0.996 for load and coupling, respectively. Additionally, the mean absolute percentage errors were 0.11% and 0.017%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10818926PMC
http://dx.doi.org/10.3390/s24020501DOI Listing

Publication Analysis

Top Keywords

load coupling
16
lc-lc tuned
12
power transfer
12
wireless power
8
machine learning
8
wpt systems
8
tuned wpt
8
predicting receiver
4
receiver characteristics
4
characteristics sensors
4

Similar Publications

Developing multifunctional nanomedicines represents a frontier. We have engineered a high-capacity DNA vector basing rolling circle amplification for the delivery of copper sulfide nanoparticles (CuS NPs) and doxorubicin (DOX), coupled with multivalent aptamers (MA) that precisely target tumors, culminating in a multifunctional nanoplatform (RMALCu@DOX), which combines the chemotherapy (CT)/photothermal therapy (PTT)/chemodynamic therapy (CDT). The vector (RMAL) boasts exceptional biocompatibility and incorporates multiple copy units, enabling the precise loading of numerous CuS NPs, forming RMALCu which possesses a robust photothermal effect and superior Fenton-like catalytic activity, heralding a project of minimally invasive dual-mode (PTT/CDT) therapy.

View Article and Find Full Text PDF

Substitution load revisited: a high proportion of deaths can be selective.

Genetics

January 2025

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.

Haldane's Dilemma refers to the concern that the need for many "selective deaths" to complete a substitution (i.e. selective sweep) creates a speed limit to adaptation.

View Article and Find Full Text PDF

Exploring Mosquito Excreta as an Alternative Sample Type for Improving Arbovirus Surveillance in Australia.

Pathogens

January 2025

Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Geelong, VIC 3220, Australia.

Current arbovirus surveillance strategies in Australia involve mosquito collection, species identification, and virus detection. These processes are labour-intensive, expensive, and time-consuming and can lead to delays in reporting. Mosquito excreta has been proposed as an alternative sample type to whole mosquito collection, with potential to streamline the virus surveillance pipeline.

View Article and Find Full Text PDF

Induction motors are essential components in industry due to their efficiency and cost-effectiveness. This study presents an innovative methodology for automatic fault detection by analyzing images generated from the Fourier spectra of current signals using deep learning techniques. A new preprocessing technique incorporating a distinctive background to enhance spectral feature learning is proposed, enabling the detection of four types of faults: healthy motor coupled to a generator with a broken bar (HGB), broken rotor bar (BRB), race bearing fault (RBF), and bearing ball fault (BBF).

View Article and Find Full Text PDF

Industrial robotic arms are often subject to significant end-effector pose deviations from the target position due to the combined effects of nonlinear deformations such as link flexibility, joint compliance, and end-effector load. To address this issue, a study was conducted on the analysis and compensation of end-position errors in a six-degree-of-freedom robotic arm. The kinematic model of the robotic arm was established using the Denavit-Hartenberg (DH) parameter method, and a rigid-flexible coupled virtual prototype model was developed using ANSYS and ADAMS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!