This paper presents a novel unscented Kalman filter (UKF) implementation with adaptive covariance matrices (ACMs), to accurately estimate the longitudinal and lateral components of vehicle velocity, and thus the sideslip angle, tire slip angles, and tire slip ratios, also in extreme driving conditions, including tyre-road friction variations. The adaptation strategies are implemented on both the process noise and measurement noise covariances. The resulting UKF ACM is compared against a well-tuned baseline UKF with fixed covariances. Experimental test results in high tyre-road friction conditions show the good performance of both filters, with only a very marginal benefit of the ACM version. However, the simulated extreme tests in variable and low-friction conditions highlight the superior performance and robustness provided by the adaptation mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10821337PMC
http://dx.doi.org/10.3390/s24020436DOI Listing

Publication Analysis

Top Keywords

unscented kalman
8
kalman filter
8
vehicle velocity
8
slip angles
8
slip ratios
8
ratios extreme
8
extreme driving
8
tire slip
8
tyre-road friction
8
adaptive unscented
4

Similar Publications

To enhance the positioning accuracy of autonomous underwater vehicles (AUVs), a new adaptive filtering algorithm (RHAUKF) is proposed. The most widely used filtering algorithm is the traditional Unscented Kalman Filter or the Adaptive Robust UKF (ARUKF). Excessive noise interference may cause a decrease in filtering accuracy and is highly likely to result in divergence by means of the traditional Unscented Kalman Filter, resulting in an increase in uncertainty factors during submersible mission execution.

View Article and Find Full Text PDF

Papermaking wastewater consists of a sizable amount of industrial wastewater; hence, real-time access to precise and trustworthy effluent indices is crucial. Because wastewater treatment processes are complicated, nonlinear, and time-varying, it is essential to adequately monitor critical quality indices, especially chemical oxygen demand (COD). Traditional models for predicting COD often struggle with sensitivity to parameter tuning and lack interpretability, underscoring the need for improvement in industrial wastewater treatment.

View Article and Find Full Text PDF

This dataset is generated from real-time simulations conducted in MATLAB/Simscape, focusing on the impact of smart noise signals on battery energy storage systems (BESS). Using Deep Reinforcement Learning (DRL) agent known as Proximal Policy Optimization (PPO), noise signals in the form of subtle millivolt and milliampere variations are strategically created to represent realistic cases of False Data Injection Attacks (FDIA). These signals are designed to disrupt the State of Charge (SoC) and State of Health (SoH) estimation blocks within Unscented Kalman Filters (UKF).

View Article and Find Full Text PDF
Article Synopsis
  • Lithium-ion batteries are crucial for the electric vehicle (EV) industry due to their high energy density, low discharge rate, and long lifespan, making accurate State of Charge (SOC) estimation important for performance improvement.
  • The proposed method combines the Thevenin 2RC battery model to capture the battery's non-linear dynamics with the Unscented Kalman Bucy Filter (UKBF) to enhance SOC estimation by dealing with measurement noise and nonlinearities.
  • A simulation in Matlab Simulink reveals that the UKBF outperforms other estimation methods like EKF and UKF, achieving a notably lower Root Mean Square Error (RMSE) of 0.003276 for SOC estimation.
View Article and Find Full Text PDF

Harsh operating conditions imposed by vehicular applications significantly limit the utilization of proton exchange membrane fuel cells (PEMFCs) in electric propulsion systems. Improper/poor management and supervision of rapidly varying current demands can lead to undesired electrochemical reactions and critical cell failures. Among other failures, flooding and catalytic degradation are failure mechanisms that directly impact the composition of the membrane electrode assembly and can cause irreversible cell performance deterioration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!