Nowadays, the automatic detection of driver fatigue has become one of the important measures to prevent traffic accidents. For this purpose, a lot of research has been conducted in this field in recent years. However, the diagnosis of fatigue in recent research is binary and has no operational capability. This research presents a multi-class driver fatigue detection system based on electroencephalography (EEG) signals using deep learning networks. In the proposed system, a standard driving simulator has been designed, and a database has been collected based on the recording of EEG signals from 20 participants in five different classes of fatigue. In addition to self-report questionnaires, changes in physiological patterns are used to confirm the various stages of weariness in the suggested model. To pre-process and process the signal, a combination of generative adversarial networks (GAN) and graph convolutional networks (GCN) has been used. The proposed deep model includes five convolutional graph layers, one dense layer, and one fully connected layer. The accuracy obtained for the proposed model is 99%, 97%, 96%, and 91%, respectively, for the four different considered practical cases. The proposed model is compared to one developed through recent methods and research and has a promising performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10819416PMC
http://dx.doi.org/10.3390/s24020364DOI Listing

Publication Analysis

Top Keywords

driver fatigue
12
eeg signals
12
automatic detection
8
detection driver
8
graph convolutional
8
convolutional networks
8
proposed model
8
fatigue
5
novel approach
4
approach automatic
4

Similar Publications

Driver fatigue recognition using limited amount of individual electroencephalogram.

Biomed Eng Lett

January 2025

Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Republic of Korea.

Unlabelled: This study aims to create a fatigue recognition system that utilizes electroencephalogram (EEG) signals to assess a driver's physiological and mental state, with the goal of minimizing the risk of road accidents by detecting driver fatigue regardless of physical cues or vehicle attributes. A fatigue state recognition system was developed using transfer learning applied to partial ensemble averaged EEG power spectral density (PSD). The study utilized layer-wise relevance propagation (LRP) analysis to identify critical cortical regions and frequency bands for effective fatigue discrimination.

View Article and Find Full Text PDF

Objective: This study aimed to explore the clinical efficacy and safety of durvalumab combined with albumin-bound paclitaxel and carboplatin as neoadjuvant therapy for resectable stage III Non-small Cell Lung Cancer (NSCLC).

Methods: A single-arm open-label phase Ib study was conducted. A total of 40 patients with driver gene-negative resectable stage III NSCLC were enrolled.

View Article and Find Full Text PDF

Semantically-Enhanced Feature Extraction with CLIP and Transformer Networks for Driver Fatigue Detection.

Sensors (Basel)

December 2024

Department of Computer Science and Software Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.

Drowsy driving is a leading cause of commercial vehicle traffic crashes. The trend is to train fatigue detection models using deep neural networks on driver video data, but challenges remain in coarse and incomplete high-level feature extraction and network architecture optimization. This paper pioneers the use of the CLIP (Contrastive Language-Image Pre-training) model for fatigue detection.

View Article and Find Full Text PDF

Background: Road traffic accidents (RTAs) are a critical public health problem leading to significant morbidity, mortality, and socioeconomic losses. Despite known risk factors like substance use and sleep-related problems, there is limited research on the prevalence of these factors among drivers who met with RTAs. Hence, this study aimed to gain insight into the prevalence of substance use and sleep-related problems among this population attending a trauma center in the northern State of India.

View Article and Find Full Text PDF

Genomic Patterns are Associated with Different Sequelae of Patients with Long-Term COVID-19.

Adv Sci (Weinh)

December 2024

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Pathobiology Ministry of Education, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.

In the post-large era, various COVID-19 sequelae are getting more and more attention to health problems. Although the mortality rate of the COVID-19 infection is now declining, it is often accompanied by new clinical sequelae with different symptoms such as fatigue after infection, loss of smell. The degree of age, gender, virus infection seems to be weakly correlated with clinical symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!