Inorganic phosphate (Pi) is a critical determinant of calcification, and its concentration is regulated by alkaline phosphatase (ALP) and Pit1. ALP is a key regulator of osteogenic calcification and acts by modulating local inorganic phosphate (Pi) concentrations through hydrolyzing pyrophosphate in the extracellular matrix (ECM). Pit1, a sodium-dependent phosphate transporter, regulates calcification via facilitating phosphate uptake within the cells. To investigate whether zinc differentially regulates osteoblastic and vascular calcifications, we examined ALP activity and Pit1 in osteoblastic and vascular smooth muscle cells (VSMCs). Our findings demonstrate that calcification in osteoblastic MC3T3-E1 cells is decreased via diminished ALP action under zinc deficiency. In contrast, zinc-deficiency-induced calcification in VSMCs is independent of ALP action, as demonstrated by very weak ALP activity and expression in calcified VSMCs. In zinc-deficient A7r5 VSMC, P accumulation increased with increasing Na phosphate concentration (3-7 mM) but not with β-GP treatment, which requires ALP activity to generate Pi. Ca deposition also increased with Na phosphate in a dose-dependent manner; in contrast, β-GP did not affect Ca deposition. In osteoblastic cells, Pit1 expression was not affected by zinc treatments. In contrast, Pit1 expression is highly upregulated in A7r5 VSMC under zinc deficiency. Using phosphonoformic acid, a competitive inhibitor of Pit1, we showed that calcification is inhibited in both A7r5 and MC3T3-E1 cells, indicating a requirement for Pit1 in both calcifications. Moreover, the downregulation of VSMC markers under zinc deficiency was restored by blocking Pit1. Taken together, our results imply that zinc-deficiency-induced calcification in VSMC is independent of ALP action in contrast to osteoblastic calcification. Moreover, Pit1 expression in VSMCs is a target for zinc deficiency and may mediate the inhibition of VSMC marker expression under zinc deficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10819640 | PMC |
http://dx.doi.org/10.3390/nu16020291 | DOI Listing |
Plants (Basel)
January 2025
Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.
Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.
View Article and Find Full Text PDFNutrients
January 2025
Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain.
Maternal nutrition during pregnancy plays a pivotal role in influencing both maternal and fetal health, impacting neonatal anthropometric outcomes and long-term disease susceptibility. An advanced maternal age (AMA ≥ 35 years) has been linked to increased risks of obstetric complications and adverse neonatal outcomes, yet its specific nutritional profile remains underexplored. : This study aimed to evaluate the nutrient and polyphenol intakes of women at an AMA compared to those of a younger control group and to investigate associations with neonatal anthropometric measures.
View Article and Find Full Text PDFNutrients
January 2025
Faculty of Health, Medicine & Behavioral Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
Bariatric surgery is increasingly offered to women of childbearing age and significantly reduces food intake and nutrient absorption. During pregnancy, associated risks, including micronutrient deficiency, are accentuated. This study describes maternal dietary intake and adherence to dietary recommendations in pregnant women with a history of bariatric surgery.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands.
Edible insects have been proposed as a novel and sustainable source of protein and other essential nutrients for human consumption but nutrient absorption efficiency is still uncertain. We investigated zinc absorption from house crickets (Acheta domesticus) in a single-center and single-blinded cross-over study with children aged 24-36 months old in Kenya from September-November 2021. For this, children were randomized to consume two different experimental meals labeled with stable isotopes of zinc (Zn) at two different days, separated by a wash-out period of one month.
View Article and Find Full Text PDFAnn Clin Lab Sci
November 2024
Department of Laboratory Medicine, Linyi People's Hospital, Linyi, Shandong, China
Objective: C-X-C motif chemokine receptor 2 (CXCR2) plays a crucial role in inflammation and immunity, and the involvement of chemokine receptors in the tumor microenvironment is extensively documented. However, the impact of CXCR2 deficiency on the complete transcriptome, including mRNA and ncRNAs, in tumor cells remains unclear.
Methods: In this study, we aimed to identify differentially expressed (DE) messenger RNA (mRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in CXCR2 knockout HeLa cells through transcriptome sequencing and to construct regulatory networks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!