Vitamin D, calcium, and iron are micronutrients crucial for bone health. However, their effect has been studied primarily in the cortical bone, with vitamin D status being assessed mainly from the total 25(OH)D serum fraction. The study aimed to investigate the impact of vitamin D (total and free fraction) and iron status (i.e., serum ferritin or soluble transferrin receptor) and calcium intake (ADOS-Ca questionnaire) on lumbar cortical and trabecular bone. In a cohort of 113 male subjects (76 athletes, 37 non-athletes) aged 15-19, the lumbar spine status (Z-score, bone mineral apparent density (BMAD), and trabecular bone score (TBS)) was determined using dual-energy X-ray absorptiometry (DXA). Relationships between the examined micronutrients and bone health parameters were observed only in athletes. Free 25(OH)D was significantly ( < 0.001) correlated with Z-score and BMAD, while total 25(OH)D ( < 0.001) and iron status (ferritin, Fe stores; < 0.01) correlated solely with BMAD. Free 25(OH)D and ferritin concentrations were the best determinants of bone status (R = 0.330; < 0.001) and explained 25% and 7% of the BMAD variance, respectively. No relationships were found between the micronutrients and TBS. The results confirmed the positive influence of vitamin D and iron on cortical, but not trabecular, bone status solely in physically active subjects. In athletes, free 25(OH)D seems to be a superior indicator of bone health to a total 25(OH)D fraction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10818825 | PMC |
http://dx.doi.org/10.3390/nu16020215 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!