Modern otology faces challenges in treating tympanic membrane (TM) perforations. Instead of surgical intervention, alternative treatments using biomaterials are emerging. Recently, we developed a robust collagen membrane using semipermeable barrier-assisted electrophoretic deposition (SBA-EPD). In this study, a collagen graft shaped like a sponge through SBA-EPD was used to treat acute and chronic TM perforations in a chinchilla model. A total of 24 ears from 12 adult male chinchillas were used in the study. They were organized into four groups. The first two groups had acute TM perforations and the last two had chronic TM perforations. We used the first and third groups as controls, meaning they did not receive the implant treatment. The second and fourth groups, however, were treated with the collagen graft implant. Otoscopic assessments were conducted on days 14 and 35, with histological evaluations and TM vibrational studies performed on day 35. The groups treated with the collagen graft showed fewer inflammatory changes, improved structural recovery, and nearly normal TM vibrational properties compared to the controls. The porous collagen scaffold successfully enhanced TM regeneration, showing high biocompatibility and biodegradation potential. These findings could pave the way for clinical trials and present a new approach for treating TM perforations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820519 | PMC |
http://dx.doi.org/10.3390/polym16020248 | DOI Listing |
Chondrocytes are commonly applied in regenerative medicine and tissue engineering. Thus, the discovery of optimal culture conditions to obtain cells with good properties and behavior for transplantation is important. In addition to biochemical cues, physical and biomechanical changes can affect the proliferation and protein expression of chondrocytes.
View Article and Find Full Text PDFLiver tissue engineering offers potential in liver transplantation, while the development of hydrogels for scalable scaffolds incorporating natural components and effective functionalities is ongoing. Here, we propose a novel microfluidic 3D printing hydrogel derived from decellularized fish liver extracellular matrix for liver regeneration. By decellularizing fish liver and combining it with gelatin methacryloyl, the hydrogel scaffold retains essential endogenous growth factors such as collagen and glycosaminoglycans.
View Article and Find Full Text PDFIt is well known that keratinized mucosa (KM) plays a crucial role for maintaining peri implant health and esthetic outcomes. The Strip Gingival Graft (SGG) technique, which involved an apically positioned flap (APF), in combination with an autogenous SGG and a xenogeneic collagen matrix (XCM), demonstrated its efficacy in re-establishing an adequate amount of KM width at implant sites. Nevertheless, it is still unclear whether harvesting the SGG from the palate (pSGG) or from the buccal aspect of natural dentition (bSGG) affects the esthetic outcomes at the augmented implant sites.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK.
The significance of three-dimensional (3D) bioprinting in the domain of regenerative medicine and tissue engineering is readily apparent. To create a multi-functional bioinspired structure, 3D bioprinting requires high-performance bioinks. Bio-inks refer to substances that encapsulate viable cells and are employed in the printing procedure to construct 3D objects progressive through successive layers.
View Article and Find Full Text PDFInflammation
January 2025
College of Acupuncture-Moxibustion-Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
Asthma is a prevalent chronic inflammatory disorder of the respiratory tract that not only manifests with respiratory symptoms but also often involves intestinal flora disorders and gastrointestinal dysfunction. Recent studies have confirmed the close relationship between the gut and lungs, known as the "gut-lung axis" theory. Fecal microbiota transplantation (FMT), a method for restoring normal intestinal flora, has shown promise in treating common gastrointestinal diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!