Welded Carbon Nanotube-Graphene Hybrids with Tunable Strain Sensing Behavior for Wide-Range Bio-Signal Monitoring.

Polymers (Basel)

Center for Intense Laser Application Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China.

Published: January 2024

Carbon nanotubes (CNTs) and graphene have commonly been applied as the sensitive layer of strain sensors. However, the buckling deformation of CNTs and the crack generation of graphene usually leads to an unsatisfactory strain sensing performance. In this work, we developed a universal strategy to prepare welded CNT-graphene hybrids with tunable compositions and a tunable bonding strength between components by the in situ reduction of CNT-graphene oxide (GO) hybrid by thermal annealing. The stiffness of the hybrid film could be tailored by both initial CNT/GO dosage and annealing temperature, through which its electromechanical behaviors could also be defined. The strain sensor based on the CNT-graphene hybrid could be applied to collect epidermal bio-signals by both capturing the faint skin deformation from wrist pulse and recording the large deformations from joint bending, which has great potential in health monitoring, motion sensing and human-machine interfacing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10819715PMC
http://dx.doi.org/10.3390/polym16020238DOI Listing

Publication Analysis

Top Keywords

hybrids tunable
8
strain sensing
8
welded carbon
4
carbon nanotube-graphene
4
nanotube-graphene hybrids
4
strain
4
tunable strain
4
sensing behavior
4
behavior wide-range
4
wide-range bio-signal
4

Similar Publications

Paper is an ideal platform for creating flexible and eco-friendly electronic systems. Leveraging the synergistic integration of zero- and two-dimensional materials, it unfolds a broad spectrum of applications within the realm of the Internet of Things (IoT), spanning from wearable electronics to smart packaging solutions. However, for paper without a polymer coating, the rough and porous nature presents significant challenges as a substrate for electronics, and the absence of well-established fabrication methods further hinders its application in wearable electronics.

View Article and Find Full Text PDF

The magneto-mechanical coupling of multiphase magnetorheological elastomers.

J Phys Condens Matter

January 2025

Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, Virginia, 24061-0131, UNITED STATES.

Magnetorheological elastomers (MREs) are soft magnetic composites that achieve tunable changes in stiffness and energy response in the presence of a magnetic field. Rigid particle composite (RC) MREs have been studied for decades for their potential applications to automotive dampers and robotic systems. Recently, magnetic fluid composite (FC) MREs have been developed which utilize magnetic fluids as inclusions to elastomers.

View Article and Find Full Text PDF

A bio-inspired microwave wireless system for constituting passive and maintenance-free IoT networks.

Natl Sci Rev

February 2025

State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China.

With the rapid expansion of wireless networks, the deployment and long-term maintenance of distributed microwave terminals have become increasingly challenging. To address these issues, we present a bio-inspired microwave system to constitute passive and maintenance-free wireless networks. Drawing inspiration from vertebrate skeletons and skins, we employ stimuli-responsive polymer with tunable stiffness to support and protect sensitive electromagnetic structures, and synthesize self-healable skin-like polymer for system encapsulation.

View Article and Find Full Text PDF

Zn-MnO2 batteries with two-electron transfer harvest high energy density, high working voltage, inherent safety, and cost-effectiveness. Zn2+ as the dominant charge carriers suffer from sluggish kinetics due to the strong Zn2+-MnO2 coulombic interaction, which is also the origin of pestilent MnO2 lattice deformation and performance degradation. Current studies particularly involve H+ insertion-dominating chemistry, where the long-term cycle stability remains challenging due to the accumulative Zn2+ insertion and structural collapse.

View Article and Find Full Text PDF

Resonantly Enhanced Hybrid Wannier-Mott-Frenkel Excitons in Organic-Inorganic Van Der Waals Heterostructures.

Adv Mater

January 2025

Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China.

Hybrid excitons formed via resonant hybridization in 2D material heterostructures feature both large optical and electrical dipoles, providing a promising platform for many-body exciton physics and correlated electronic states. However, hybrid excitons at organic-inorganic interface combining the advantages of both Wannier-Mott and Frenkel excitons remain elusive. Here, hybrid excitons are reported in the copper phthalocyanine/molybdenum diselenide (CuPc/MoSe) heterostructure (HS) featuring strong molecular orientation dependence by low-temperature photoluminescence and absorption spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!