Soft materials bearing rigid, lightweight, and vibration-dampening properties offer distinct advantages over traditional wooden and metal-based fillings for spent fuel transport casks, due to their low density, tunable structure, excellent mechanical properties, and ease of processing. In this study, a novel type of rigid polyurethane foam is prepared using a conventional polycondensation reaction between isocyanate and hydroxy groups. Moreover, the density and size of the pores in these foams are precisely controlled through simultaneous gas generation. The as-prepared polyurethane exhibits high thermal stability exceeding 185 °C. Lifetime predictions based on thermal testing indicate that these polyurethane foams could last up to over 60 years, which is double the lifetime of conventional materials of about 30 years. Due to their occlusive structure, the mechanical properties of these polymeric materials meet the design standards for spent fuel transport casks, with maximum compression and tensile stresses of 6.89 and 1.37 MPa, respectively, at a testing temperature of -40 °C. In addition, these polymers exhibit effective flame retardancy; combustion ceased within 2 s after removal of the ignition source. All in all, this study provides a simple strategy for preparing rigid polymeric foams, presenting them as promising prospects for application in spent fuel transport casks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10819990 | PMC |
http://dx.doi.org/10.3390/polym16020229 | DOI Listing |
Materials (Basel)
November 2024
China Institute of Atomic Energy, Beijing 102413, China.
J Radiat Res
December 2024
Faculty and Postgraduate School of Nursing, Tokyo Healthcare University, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8558, Japan.
The more science progresses, the more life and society change. Medicine also changes with the times and the culture. This is also true for radiation emergency medicine, which includes dose-assessment leading to diagnosis, treatment, medical follow-up and prognosis of persons who have developed acute injury or illness due to radioactive contamination or radiation exposure.
View Article and Find Full Text PDFAdv Mater
December 2024
Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
Separating actinides from lanthanides is essential for managing nuclear waste and promoting sustainable nuclear energy development. The recycling of transuranium elements (TRUs: Np, Pu, Am) is also significant for various nuclear technology applications. In this study, a dual strategy is introduced to designing covalent organic frameworks (COFs) that skillfully combines molecular rigidity with flexibility, integrating both hard and soft donor atoms in the synthesis of monomers.
View Article and Find Full Text PDFDalton Trans
December 2024
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.
The co-extraction of pertechnetate (TcO) along with the uranyl ion (UO) is a problematic issue that complicates the Plutonium Uranium Reduction EXtraction (PUREX) process for reprocessing spent nuclear fuel. Unfortunately, research on the interactions of TcO with UO is very scarce. This work quantitatively investigated the interactions of TcO and its analog ReO with UO in acetonitrile with 0.
View Article and Find Full Text PDFNpj Mater Degrad
December 2024
Department of Earth Sciences, Carleton University, Ottawa, ON Canada.
The uniqueness of the Canadian spent nuclear fuel disposal container design requires a detailed understanding of the copper corrosion processes that could occur in deep geological repositories. This review aimed to identify knowledge gaps surrounding impacts of changing conditions and the evolution of corrosion processes as conditions change from moist/cool, through warm/dry, to cool/fully saturated. This review indicates that early, unsaturated corrosion, and compounding influences of previous corrosion are understudied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!