A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application and Properties of Polyglycolic Acid as a Degradation Agent in MPU/HNBR Degradable Elastomer Composites for Dissolvable Frac Plugs. | LitMetric

Application and Properties of Polyglycolic Acid as a Degradation Agent in MPU/HNBR Degradable Elastomer Composites for Dissolvable Frac Plugs.

Polymers (Basel)

Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, China.

Published: January 2024

In this research, fully degradable elastomeric sealing materials were developed to enhance the environmental sustainability of oil and gas extraction. The modification of millable polyurethane rubber (MPU) with polyglycolic acid/hydrogenated nitrile butadiene rubber (PGA/HNBR) led to the synthesis of PGA@MPU/HNBR composite materials. The impact of varying monomer quantities on the mechanical properties, degradation behavior, degradation mechanisms, and thermal stability of these materials was investigated. Our findings illustrate that an increasing proportion of HNBR in the PGA@MPU/HNBR composite materials resulted in a decreased degradation rate. Simultaneously, higher HNBR content improved the thermal stability of the materials, while the inclusion of PGA reduced material hardness, rendering the composites more susceptible to swelling. At an HNBR content of 40 phr, MPU at 60 phr, and PGA at 6 phr, the composite material demonstrated the highest retention of mechanical properties at 31.3% following 168 h of hydrolysis at 100 °C. The degradation of the composite materials in 100 °C water primarily resulted from the hydrolysis of MPU's ester groups, with HNBR remaining unaffected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820963PMC
http://dx.doi.org/10.3390/polym16020181DOI Listing

Publication Analysis

Top Keywords

composite materials
12
pga@mpu/hnbr composite
8
mechanical properties
8
thermal stability
8
stability materials
8
hnbr content
8
100 °c
8
materials
6
degradation
5
application properties
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!