Physiological and molecular marker-based changes were studied in the tissues of two-year-old (L.) Burgsd. seedlings under salt treatment. For 60 days, 5 mL of 100 mM NaCl solution was applied to each plant per day to a cumulative volume of 300 mL in the substrate. In response to osmotic stress, the seedlings increased their water use efficiency (WUE) on day 20 of regular NaCl application and maintained a stable net photosynthetic rate (A) per unit area. Under conditions of increasing salinity, the young plants maintained a balanced water regime of the leaf tissues (Ψ). The seedlings invested mass to their root growth (R/S), retained a substantial portion (72%) of Na ions in the roots, and protected their leaves against intoxication and damage. A significant decrease in the leaf gas exchange parameters (g, E, A) was manifested on day 60 of the experiment when the cumulative NaCl intake was 300 mL per plant. The variability in the reactions of the seedlings to salinity is related to the use of open-pollinated progeny (54 genotypes) in the experiment. Lus-miR168 showed tissue- and genotype-specific genome responses to the applied stress. Polymorphic miRNA-based loci were mostly detected in the root samples on the 20th and 35th days of the experiment. The cumulative effect of the salt treatment was reflected in the predominance of polymorphic loci in the leaves. We can confirm that miRNA-based markers represent a sensitive detection tool for plant stress response on an individual level. The screening and selection of the optimal type of miRNA for this type of research is crucial. The cytochrome P450-Based Analog (PBA) techniques were unable to detect polymorphism among the control and treated seedlings, except for the primer pair CYP2BF+R, where, in the roots of the stressed plant, insertions in the amplicons were obtained. The expression ratios of cytochrome P450 in the salt-stressed plants were higher in the roots in the case of 20/100 mL and in the leaves with higher doses. The observed physiological and molecular responses to salinity reflect the potential of seedlings in adaptation to osmotic and ionic stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820964 | PMC |
http://dx.doi.org/10.3390/plants13020261 | DOI Listing |
Geroscience
January 2025
Buck Institute for Research On Aging, Novato, CA, 94945, USA.
Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.
View Article and Find Full Text PDFJ Mammary Gland Biol Neoplasia
January 2025
Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.
View Article and Find Full Text PDFJ Mol Evol
January 2025
Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.
Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).
View Article and Find Full Text PDFCell Physiol Biochem
January 2025
UR-UPJV 4667, UFR Sciences, Université de Picardie Jules Verne, Amiens, France,
Quiescent pancreatic stellate cells (PSCs) represent only a very low proportion of the pancreatic tissue, but their activation leads to stroma remodeling and fibrosis associated with pathologies such as chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). PSC activation can be induced by various stresses, including acidosis, growth factors (PDGF, TGFβ), hypoxia, high pressure, or intercellular communication with pancreatic cancer cells. Activated PSC targeting represents a promising therapeutic strategy, but little is known regarding the molecular mechanisms underlying the activation of PSCs.
View Article and Find Full Text PDFMol Ecol
January 2025
Department of Biology, Colorado State University, Fort Collins, Colorado, USA.
Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!