In this study, we exposed a commonly used duckweed species- L.-to twelve environmentally relevant metals and metalloids under laboratory conditions. The phytotoxic effects were evaluated in a multi-well-plate-based experimental setup by means of the chlorophyll fluorescence imaging method. This technique allowed the simultaneous measuring of the growth and photosynthetic parameters in the same samples. The inhibition of relative growth rates (based on frond number and area) and photochemical efficiency (F/F and Y(II)) were both calculated from the obtained chlorophyll fluorescence images. In the applied test system, growth-inhibition-based phytotoxicity endpoints proved to be more sensitive than chlorophyll-fluorescence-based ones. Frond area growth inhibition was the most responsive parameter with a median EC of 1.75 mg L, while F/F, the more responsive chlorophyll-fluorescence-based endpoint, resulted in a 5.34 mg L median EC for the tested metals. Ag (EC 0.005-1.27 mg L), Hg (EC 0.24-4.87 mg L) and Cu (EC 0.37-1.86 mg L) were the most toxic elements among the tested ones, while As(V) (EC 47.15-132.18 mg L), Cr(III) (EC 6.22-19.92 mg L), Se(VI) (EC 1.73-10.39 mg L) and Zn (EC 3.88-350.56 mg L) were the least toxic ones. The results highlighted that multi-well-plate-based duckweed phytotoxicity assays may reduce space, time and sample volume requirements compared to the standard duckweed growth inhibition tests. These benefits, however, come with lowered test sensitivity. Our multi-well-plate-based test setup resulted in considerably higher median EC (3.21 mg L) for frond-number-based growth inhibition than the 0.683 mg L median EC derived from corresponding data from the literature with standardized -tests. Under strong acute phytotoxicity, frond parts with impaired photochemical functionality may become undetectable by chlorophyll fluorometers. Consequently, the plant parts that are still detectable display a virtually higher average photosynthetic performance, leading to an underestimation of phytotoxicity. Nevertheless, multi-well-plate-based duckweed phytotoxicity assays, combined with chlorophyll fluorescence imaging, offer definite advantages in the rapid screening of large sample series or multiple species/clones. As chlorophyll fluorescence images provide information both on the photochemical performance of the test plants and their morphology, a joint analysis of the two endpoint groups is recommended in multi-well-plate-based duckweed phytotoxicity assays to maximize the information gained from the tests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10821045 | PMC |
http://dx.doi.org/10.3390/plants13020215 | DOI Listing |
PLoS One
January 2025
Polish Academy of Sciences, Institute of Plant Genetics, Poznan, Poland.
The increasing cultivation of perennial C4 grass known as Miscanthus spp. for biomass production holds promise as a sustainable source of renewable energy. Unlike the sterile triploid hybrid of M.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Agronomía, Escuela Superior de Ingeniería, Universidad de Almeria, Almeria, España.
The production of medicinal plants under stressful environments offers an alternative to meet the requirements of sustainable agriculture. The action of mycorrhizal fungus; Funneliformis mosseae and zinc in stimulating growth and stress tolerance in medicinal plants is an intriguing area of research. The current study evaluated the combined use of nano-zinc and mycorrhizal fungus on the physiochemical responses of Dracocephalum moldavica under salinity stress.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
Plant Physiol Biochem
December 2024
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China. Electronic address:
Manganese (Mn) is an essential element for plant growth but can be toxic at high levels. Pecan (Carya illinoensis), an important nut-producing species, has been observed to exhibit tolerance to high Mn levels. In this study, pecan seedlings were exposed to a nutrient solution containing either 2 μM (control) or 1000 μM (excess) MnSO to investigate the physiological mechanisms.
View Article and Find Full Text PDFBiophys J
December 2024
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!