Understanding the response of date palm ( L.) cultivars to salt stress is essential for the sustainable management of phoeniculture in Tafilalet, Morocco. It offers a promising avenue for addressing the challenges presented by the increasing salinity of irrigation waters, especially because farmers in these regions often lack the necessary knowledge and resources to make informed decisions regarding cultivar selection. This study addresses this issue by investigating the performance of the most relied on cultivars by farmers in Tafilalet, namely Mejhoul, Boufeggous, Nejda, and Bouskri. These cultivars were exposed to a sodium chloride treatment of 154 mM, and their performances were evaluated over a three-month period. We examined the growth rate, photosynthesis-related parameters, pigments, water status in plants, and biochemical compounds associated with oxidative stress, osmotic stress, and ionic stress. Principle component analysis (PCA) effectively categorized the cultivars into two distinct groups: salt-sensitive (Mejhoul and Nejda) and salt-tolerant (Boufeggous and Bouskri). These findings provide valuable insights for farmers, highlighting the advantages of cultivating Boufeggous and Bouskri cultivars due to their superior adaptation to salt conditions. These cultivars exhibited moderate decrease in shoot growth (25%), enhanced catalase activity, a smaller increase in anthocyanin content, and greater enhancement in organic osmolytes compared with salt-sensitive cultivars like Mejhoul (experiencing an 87% reduction in shoot elongation) and Nejda (exhibiting the highest reduction in leaf area). Furthermore, the Na/K ratio was positively influenced by salt stress, with Mejhoul and Nejda recording the highest values, suggesting its potential as an indicator of salt stress sensitivity in date palms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820799PMC
http://dx.doi.org/10.3390/plants13020186DOI Listing

Publication Analysis

Top Keywords

salt stress
16
cultivars
8
palm cultivars
8
bouskri cultivars
8
mejhoul nejda
8
boufeggous bouskri
8
stress
6
salt
5
stress induces
4
induces contrasting
4

Similar Publications

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

Background: Nitroxyl (HNO) is an emerging signaling molecule that plays a significant regulatory role in various aspects of plant biology, including stress responses and developmental processes. However, understanding the precise actions of HNO in plants has been challenging due to the absence of highly sensitive and real-time in situ monitoring tools. Consequently, it is crucial to develop effective and accurate detection methods for HNO.

View Article and Find Full Text PDF

Comprehensive analysis of the LTPG gene family in willow: Identification, expression profiling, and stress response.

Int J Biol Macromol

January 2025

Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China. Electronic address:

The non-specific lipid-transfer proteins (LTPs), particularly the glycosylphosphatidylinositol (GPI)-anchored LTPs (LTPGs), play pivotal roles in various plant physiological functions, particularly in the context of environmental stress adaptation. Despite their importance, LTPGs in willow (Salix matsudana), an ecologically and economically important species, remains poorly understood. This study systematically identified and characterized 30 SmLTPGs in the S.

View Article and Find Full Text PDF

Alkaline salts have more severe adverse effects on plant growth and development than neutral salts do. However, the adaptive mechanisms of plants to alkaline salt stress remain poorly understood, especially at the molecular level. The Songnen Plain in northeast China is composed of typical 'soda' saline-alkali soil, with NaHCO and NaCO as the predominant alkaline salts (pH ≥ 9.

View Article and Find Full Text PDF

The dual-action evolutionarily conserved NatB catalytic subunit NAA20 regulates poplar root development in response to salt and osmotic stresses.

J Integr Plant Biol

January 2025

State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

In Populus simonii, the N-terminal acetyltransferase subunit gene PsiNAA20 was induced by salt stress and osmotic stress and regulates root development. The spatiotemporal specificity of PsiNAA20-interacting gene expression and translation efficiency suggested dual functions in poplar root development under salt stress and osmotic stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!