Valerian salad and lettuce are edible species that are easy to grow rapidly, and have traits useful for commercial purposes. The consumption of these species is increasing worldwide for their nutritional properties. Seed germination and seedling development are critical stages in the life cycle of plants. Seed priming, including the use of high-energy radiation, is a set of techniques based on the idea that low stress levels stimulate plant responses, thereby improving seed germination and plant growth. In this study, we evaluated in hydroponic culture (i) the germination performance; (ii) morphological traits; and (iii) antioxidant and phenol contents at different endpoints in and that were developed from seeds exposed to X-rays (1 Gy and 10 Gy doses). Under radiation, biomass production increased in both species, especially in lettuce, where also a reduction in the mean germination time occurred. Radiation increased the level of phenols during the first growth weeks, under both doses for lettuce, and only 1 Gy was required for valerian salad. The species-specific responses observed in this research suggest that the use of radiations in seed priming needs to be customized to the species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10818939PMC
http://dx.doi.org/10.3390/plants13020165DOI Listing

Publication Analysis

Top Keywords

seed priming
12
valerian salad
8
seed germination
8
seed
5
priming low-dose
4
radiation
4
low-dose radiation
4
radiation improves
4
improves growth
4
growth valerian
4

Similar Publications

Synthetic elicitors are non-toxic chemicals and safe for the environment when applied to plants in a variety of ways. They have been shown to interact with defense mechanisms of plants and cause the production of a wide range of valuable secondary metabolites, both volatile and non-volatile. Plants primed with chemical elicitors are indirectly induced to increase their resistance to herbivore attacks in addition to imparting tolerance or resistance to nearby plants against biotic stresses.

View Article and Find Full Text PDF

Salt stress is one of the principal abiotic stresses limiting agricultural production and seriously inhibiting seed germination rates. This study selected the salt-tolerant rice variety HD961 and the salt-sensitive rice variety 9311 as experimental materials to investigate the physiological and metabolic effects of exogenous Spd seed priming on rice seeds and seedlings under NaCl stress. The experiment involved treating rice seeds with 0.

View Article and Find Full Text PDF

Optimization of γ-Aminobutyric Acid Production in Brown Rice via Prolonged Seed Priming.

Plants (Basel)

December 2024

Fujian Laboratory for Rice Germplasm Innovation and Molecular Breeding, Biotechnology Research Institute, Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China.

Germinated whole seeds possess elevated levels of bioactive nutrients; however, their application is hindered by several constraints. The germination process is typically time-consuming, and germinated seeds present challenges in terms of storage and transportation compared to dry seeds. This study introduces a novel processing method for rice, termed prolonged priming (PLP), aiming to combine the benefits of germinated and dry seeds.

View Article and Find Full Text PDF

Hydropriming rice seeds effectively improve the germination percentage, shortens the germination period, and promotes seedling growth. The impact of seed hydropriming is to speed up growth under dry soil conditions, thereby avoiding drought damage. This study analyzes the effect of hydropriming on morpho-physiological changes in the water uptake of rice seeds using "Kasalath" and "Nipponbare" under water-deficit conditions.

View Article and Find Full Text PDF

Cadmium (Cd) is one of the foremost phytotoxic elements. Its proportion in agricultural soil is increasing critically due to anthropogenic activities. Cd stress is a major crop production threat affecting food security globally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!