Plant pathogenic infections causing substantial global food losses are a persistent challenge. This study investigates a potential biocontrol strategy against the necrotrophic fungus using the endophytic fungus isolated from in Colombia. Today, synthetic fungicides dominate control, raising environmental and health concerns. exhibits notable in vitro effects, inhibiting growth by approximately 60% during co-culture and 50% in double disc co-culture. Additionally, it suppresses botryanes production and produces the compound heptacyclosordariolone, which has proven effective in inhibiting mycelial growth and spore germination in vitro. This biocontrol agent could be a potential eco-friendly alternative to replace synthetic fungicides. Our study provides insights into the chemical and biological mechanisms underpinning the antagonistic activity of , emphasizing the need for further research to understand its biosynthesis pathways and optimize its biocontrol potential. It also contributes molecular evidence of fungal interactions with implications for advanced forums in molecular studies in biology and chemistry, particularly in addressing plant pathogenic infections and promoting sustainable agriculture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10816056 | PMC |
http://dx.doi.org/10.3390/ijms25021022 | DOI Listing |
Sci Rep
January 2025
College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.
View Article and Find Full Text PDFPhytochemistry
January 2025
CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Nanhai Road 7, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, PR China. Electronic address:
Seven previously undescribed polyketide derivatives, fusariumtides A-G (1-7), together with three known analogues (8-10), were isolated from the culture extract of Fusarium asiaticum QA-6, an endophytic fungus obtained from the fresh stem tissue of the medicinal plant Artemisia argyi H. Lev. & Vaniot.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran.
This study aimed to achieve two main objectives: first, to determine whether the virulence factors of symbiotic bacteria of entomopathogenic nematodes (EPNs) against insect hosts are cell-associated or secreted, and to shed light on the underlying mechanisms of pathogenicity; and second, to identify and evaluate the standalone pathogenicity of symbiotic bacteria associated with entomopathogenic nematodes against Tenebrio molitor. Three bacterial species, Xenorhabdus nematophila (A41, SC, A18 and SF), Photorhabdus kayaii, and P. thracensis, were isolated and characterized via phylogenetic analysis of 16S-rRNA and gyrB genes.
View Article and Find Full Text PDFDev Cell
December 2024
State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China. Electronic address:
The exchange of molecular information across kingdoms is crucial for the survival of both plants and their pathogens. Recent research has identified that plants transfer their small RNAs and microRNAs into fungal pathogens to suppress infection. However, whether and how plants send defense proteins into pathogens remains unknown.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Lab, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China. Electronic address:
Environmental endocrine disruptors constitute a category of exogenous compounds that interfere with the endocrine system's functions in organisms or cells. As a class of particularly representative endocrine-disrupting chemicals, the accumulation of per- and polyfluoroalkyl substances potentially leads to adverse health effects, including hormonal disruptions, developmental issues, and cancer. However, the classification of these disruptors is intricate, and the data on their potential health risks is scattered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!