Anti-Obesity Effects of GABA in C57BL/6J Mice with High-Fat Diet-Induced Obesity and 3T3-L1 Adipocytes.

Int J Mol Sci

Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam 13488, Republic of Korea.

Published: January 2024

Obesity is the excessive accumulation of body fat resulting from impairment in energy balance mechanisms. In this study, we aimed to investigate the mechanism whereby GABA (γ-aminobutyric acid) prevents high-fat diet-induced obesity, and whether it induces lipolysis and browning in white adipose tissue (WAT), using high-fat diet (HFD)-fed obese mice and 3T3-L1 adipocytes. We demonstrated that GABA substantially inhibits the body mass gain of mice by suppressing adipogenesis and lipogenesis. Consistent with this result, histological analysis of WAT demonstrated that GABA decreases adipocyte size. Moreover, we show that GABA administration decreases fasting blood glucose and improves serum lipid profiles and hepatic lipogenesis in HFD-fed obese mice. Furthermore, Western blot and immunofluorescence analyses showed that GABA activates protein kinase A (PKA) signaling pathways that increase lipolysis and promote uncoupling protein 1 (UCP1)-mediated WAT browning. Overall, these results suggest that GABA exerts an anti-obesity effect via the regulation of lipid metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815605PMC
http://dx.doi.org/10.3390/ijms25020995DOI Listing

Publication Analysis

Top Keywords

high-fat diet-induced
8
diet-induced obesity
8
3t3-l1 adipocytes
8
hfd-fed obese
8
obese mice
8
demonstrated gaba
8
gaba
7
anti-obesity effects
4
effects gaba
4
gaba c57bl/6j
4

Similar Publications

Background: Obesity and overweight are associated with low-grade inflammation induced by adipose tissue expansion and perpetuated by altered intestinal homeostasis, including increased epithelial permeability. Intestinal epithelium functions are supported by intestinal epithelial cells (IEC) mitochondria function.

Methods And Results: Here, we report that diet-induced obesity (DIO) in mice induces lipid metabolism adaptations favoring lipid storage in IEC together with reduced number, altered dynamics and diminished oxidative phosphorylation activity of IEC mitochondria.

View Article and Find Full Text PDF

Background: Although bariatric and metabolic surgical methods, including duodenal-jejunal bypass (DJB), were shown to improve metabolic dysfunction-associated steatotic liver disease (MASLD) in clinical trials and experimental rodent models, their underlying mechanisms remain unclear. The present study therefore evaluated the therapeutic effects and mechanisms of action of DJB in rats with MASLD.

Methods: Rats with MASLD were randomly assigned to undergo DJB or sham surgery.

View Article and Find Full Text PDF

Disrupted feeding and fasting cycles as well as chronic high fat diet (HFD)-induced obesity are associated with cardiovascular disease risk factors. We designed studies that determined whether two weeks of time-restricted feeding (TRF) intervention in mice fed a chronic HFD would reduce cardiovascular disease risk factors. Mice were fed a normal diet (ND; 10% fat) ad libitum or HFD (45% fat) for 18 weeks ad libitum to establish diet-induced obesity.

View Article and Find Full Text PDF

Hypercholesterolemia is a risk factor of coronary heart disease and cholesterol-lowering probiotics are seen as alternative to drugs for the management of this condition. In the present study, we evaluated the cholesterol-lowering activity of KS6I1 in high-cholesterol diet-induced hypercholesterolemic mice. The mice were fed with high-cholesterol diet (HCD) and were divided into three groups: HCD group, KS6I1 group (fed with HCD + 200 μl of 10 CFU/ml KS6I1), and L.

View Article and Find Full Text PDF

Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!