Upregulation of Wheat Heat Shock Transcription Factor by ABA Contributes to Drought Tolerance.

Int J Mol Sci

Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China.

Published: January 2024

Drought stress can seriously affect the yield and quality of wheat (). So far, although few wheat heat shock transcription factors (Hsfs) have been found to be involved in the stress response, the biological functions of them, especially the members of the HsfC (heat shock transcription factor C) subclass, remain largely unknown. Here, we identified a class C encoding gene, , based on our previous omics data and analyzed its biological function in transgenic plants. encodes a protein containing 274 amino acids and shows the basic characteristics of the HsfC class. Gene expression profiles revealed that was constitutively expressed in many tissues of wheat and was induced during seed maturation. could be upregulated by PEG and abscisic acid (ABA), suggesting that this Hsf may be involved in the regulation pathway depending on ABA in drought resistance. Further results represented that TaHsfC3-4 was localized in the nucleus but had no transcriptional activation activity. Notably, overexpression of in () quadruple mutant plants complemented the ABA-hyposensitive phenotypes of the quadruple mutant including cotyledon greening, root elongation, seedling growth, and increased tolerance to drought, indicating positive roles of TaHsfC3-4 in the ABA signaling pathway and drought tolerance. Furthermore, we identified TaHsfA2-11 as a TaHsfC3-4-interacting protein by yeast two-hybrid (Y2H) screening. The experimental data show that TaHsfC3-4 can indeed interact with TaHsfA2-11 in vitro and in vivo. Moreover, transgenic overexpression lines exhibited enhanced drought tolerance, too. In summary, our study confirmed the role of TaHsfC3-4 in response to drought stress and provided a target locus for marker-assisted selection breeding to improve drought tolerance in wheat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10816066PMC
http://dx.doi.org/10.3390/ijms25020977DOI Listing

Publication Analysis

Top Keywords

drought tolerance
16
heat shock
12
shock transcription
12
wheat heat
8
transcription factor
8
drought
8
tolerance drought
8
drought stress
8
quadruple mutant
8
tolerance
5

Similar Publications

Unveiling the role of OsSAP17: Enhancing plant resistance to drought and salt.

Plant Physiol Biochem

December 2024

College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China. Electronic address:

With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice.

View Article and Find Full Text PDF

Bacillus subtilis is known to promote root growth and improve plant physiology, while organic compost enhances soil water retention. This study explored the combined effect of inoculating B. subtilis in organic compost on soybean growth under water deficit.

View Article and Find Full Text PDF

Contrasts in hydraulics underlie the divergent performances of Populus and native tree species in water-limited sandy land environments.

Physiol Plant

January 2025

CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, People's Republic of China.

Populus tree species are commonly used for creating shelter forests in vast areas of northern China, at least partially due to their fast growth. However, they are facing severe problems of decline and mortality caused by drought. In contrast, tree species native to water-limited environments usually have slow growth and are currently not commonly used in afforestation, while these species are gaining more attention in forestry for their greater resilience to drought.

View Article and Find Full Text PDF

The lactic acid bacterial (LAB) species have proven multifaceted roles in sustainable agriculture due to their biologically safe nature, making them eco-friendly. However, their plant growth-improving mechanisms in stressed and non-stressed conditions are still under consideration. Thus, the current work has been planned to evaluate the drought tolerance potential and plant growth-promoting (PGP) traits of Loigolactobacillus coryniformis BCH-4 in Zea mays L.

View Article and Find Full Text PDF

Drought stress has become one of the biggest concerns in threating the growth and yield of carrots ( L.). Recent studies have shed light on the physiological and molecular metabolisms in response to drought in the carrot plant; however, tissue-specific responses and regulations are still not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!