The Synthesis and Characterization of a Delivery System Based on Polymersomes and a Xanthone with Inhibitory Activity in Glioblastoma.

Life (Basel)

Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.

Published: January 2024

Glioblastoma (GBM) is the most common and deadly primary malignant brain tumor. Current therapies are insufficient, and survival for individuals diagnosed with GBM is limited to a few months. New GBM treatments are urgent. Polymeric nanoparticles (PNs) can increase the circulation time of a drug in the brain capillaries. Polymersomes (PMs) are PNs that have been described as having attractive characteristics, mainly due to their stability, prolonged circulation period, biodegradability, their ability to sustain the release of drugs, and the possibility of surface functionalization. In this work, a poly(ethylene glycol)-ε-caprolactone (PEG-PCL) copolymer was synthesized and PMs were prepared and loaded with an hydrolytic instable compound, previously synthesized by our research team, the 3,6-bis(2,3,4,6-tetra-O-acetyl-β-glucopyranosyl)xanthone (XGAc), with promising cytotoxicity on glioblastoma cells (U-373 MG) but also on healthy cerebral endothelial cells (hCMEC/D3). The prepared PMs were spherical particles with uniform morphology and similar sizes (mean diameter of 200 nm) and were stable in aqueous suspension. The encapsulation of XGAc in PMs (80% encapsulation efficacy) protected the healthy endothelial cells from the cytotoxic effects of this compound, while maintaining cytotoxicity for the glioblastoma cell line U-373 MG. Our studies also showed that the prepared PMs can efficiently release XGAc at intratumoral pHs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820267PMC
http://dx.doi.org/10.3390/life14010132DOI Listing

Publication Analysis

Top Keywords

cytotoxicity glioblastoma
8
endothelial cells
8
prepared pms
8
pms
5
synthesis characterization
4
characterization delivery
4
delivery system
4
system based
4
based polymersomes
4
polymersomes xanthone
4

Similar Publications

The overall goal of this work was to assess the ability of Natural Killer cells to kill cultures of patient-derived glioblastoma cells. Herein we report impressive levels of NK-92 mediated killing of various patient-derived glioblastoma cultures observed at ET (effector: target) ratios of 5:1 and 1:1. This enabled direct comparison of the degree of glioblastoma cell loss across a broader range of glioblastoma cultures.

View Article and Find Full Text PDF

Isolation of anti-inflammatory and cytotoxic secondary metabolites from Valeriana phu and evaluation of their mechanisms of action.

Fitoterapia

January 2025

Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, TR-34755, Kayışdağı, İstanbul, Türkiye. Electronic address:

As a result of anti-inflammatory activity-guided fractionation, 16 secondary metabolites from the underground parts of Valeriana phu L. were obtained, including five new ones belonging to iridoid (1, 2, and 5), phenylpropanoid (6) and neolignan (7) chemical classes. Their structures were elucidated by 1D and 2D NMR analyses as well as HRESIMS.

View Article and Find Full Text PDF

This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.

View Article and Find Full Text PDF

Indolo[2,3-]pyrrolo[3,4-]carbazole scaffold is successfully used as an efficient structural motif for the design and development of different antitumor agents. In this study, we investigated the anti-glioblastoma therapeutic potential of glycosylated indolocarbazole analog LCS1269 utilizing in vitro, in vivo, and in silico approaches. Cell viability was estimated by an MTT assay.

View Article and Find Full Text PDF

Repurposing Osimertinib and Gedatolisib for Glioblastoma Treatment: Evidence of Synergistic Effects in an In Vitro Phenotypic Study.

Pharmaceuticals (Basel)

December 2024

Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.

Glioblastoma is a malignant tumor with a poor prognosis for the patient due to its high lethality and limited chemotherapy available. Therefore, from the point of view of chemotherapy treatment, glioblastoma can be considered an unmet medical need. This has led to the investigation of new drugs for monotherapy or associations, acting by synergistic pharmacological mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!