XGB Modeling Reveals Improvement of Compressive Strength of Cement-Based Composites with Addition of HPMC and Chitosan.

Materials (Basel)

Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China.

Published: January 2024

This study investigates the improvement in the compressive strength of cellulose/cement-based composites. Methyl cellulose (MC), carboxymethyl cellulose (CMC), and hydroxypropyl cellulose (HPMC) are separately used as the cellulose phase with different wt%. Graphene oxide (GO) and zoledronic acid (ZOL) are used as additives for bone regeneration for various formulations. Utilizing Extreme Gradient Boosting (XGB) modeling, this research demonstrates the roles of the choice of the cellulose phase, wt% of cement phase, % gelatin, % citric acid, degradation time, and concentration of GO and ZOL in influencing compressive strength. The XGB regression model, with an R value of 0.99 (~1), shows the predictive power of the model. Feature importance analysis demonstrates the significance of cellulose choice and the addition of chitosan in enhancing compressive strength. The correlation heatmap reveals positive associations, emphasizing the positive influence of HPMC and CMC compared with MC and the substantial impact of chitosan and citric acid on compressive strength. The model's predictive accuracy is validated through predicted compressive strength values with experimental observations, providing insights for optimizing cellulose-reinforced cements and enabling tailored material design for enhanced mechanical performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10820120PMC
http://dx.doi.org/10.3390/ma17020374DOI Listing

Publication Analysis

Top Keywords

compressive strength
24
xgb modeling
8
improvement compressive
8
cellulose phase
8
phase wt%
8
citric acid
8
compressive
6
strength
6
cellulose
6
modeling reveals
4

Similar Publications

Recently biocementation has got attention of many researchers worldwide as one of the most potent techniques for sustainable construction. Several studies have been carried out worldwide on biocementation by urea hydrolysis. Biocementation by bacterially induced calcium carbonate precipitation by different bacterial species has been among the most widely researched areas in this field.

View Article and Find Full Text PDF

This study aimed to evaluate the impact of different manipulation methods and storage environments on the microstructural, chemical, and mechanical properties of calcium-enriched mixture (CEM) cement. Four sample groups were examined, including nondried (ND-I) and dried (D-I) groups placed directly in an incubator, dried samples stored in phosphate-buffered saline (PBS) (D-P), and dried samples stored in distilled water (D-W). Various analyses, including Vickers microhardness, compressive strength, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) were conducted after incubating the samples for 7 days.

View Article and Find Full Text PDF

3D porous carbon electrodes have attracted significant attention for advancing compressible supercapacitors (SCs) in flexible electronics. The micro- and nanoscale architecture critically influences the mechanical and electrochemical performance of these electrodes. However, achieving a balance between high compressive strength, electrochemical stability, and cost-effective sustainable production remains challenging.

View Article and Find Full Text PDF

This study investigates the mechanical and microstructural properties of loose sandy soil stabilized with alkali-activated Ground Granulated Blast Furnace Slag (GGBFS). To examine the effects of varying GGBFS contents, curing times, and confining pressures on mechanical behavior, undrained triaxial and unconfined compressive strength (UCS) tests were conducted. Microstructural analyses using FE-SEM, EDX, and FTIR were performed to elucidate the nature and development of cementation.

View Article and Find Full Text PDF

As the depth of coal mining in China continues to increase, the fracturing of coal rock masses has an increasingly complex impact on the surrounding rock roadways. The majority of the mine's roadways run through coal rock masses with hard roofs and soft bottoms, which typically exhibit complex dynamic behaviour. To further research the mechanical behaviour and fracture evolution of coal rock masses under hard-roof and soft-floor conditions, the study is based on the majority of working faces in a mine, which have hard roofs and soft floors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!