Psychological stress exposure is well recognized to exacerbate inflammatory bowel disease (IBD) but the mechanisms involved remain poorly understood. In this study, chronic T cell-mediated colitis was induced by adoptively transferring CD4CD45RB splenic T cells from C57BL/6 WT donor mice into mice. Two weeks after T cell transfer, mice were exposed to a prolonged restraint stressor (RST) for 8 h per day for 6 consecutive days. The colitis phenotype was assessed via histopathology and semi-quantitative rt-PCR at humane endpoints or 10 weeks post-T-cell transfer. Mice that received the T cell transplant developed chronic colitis marked by increases in colonic histopathology and inflammatory cytokines. Colonic histopathology was greater in males than females regardless of RST exposure but RST exposure increased histopathology scores in females such that they reached scores observed in the males. This pattern was consistent with cytokine gene expression and protein levels in the colon (especially for IFN-γ, IL-17A, and TNF-α). Serum cytokine levels were not strongly affected by exposure to the stressor. Using a murine model of chronic T cell-mediated colitis, this study demonstrates that biological sex strongly influences colonic inflammation and exposure to chronic stress has a more pronounced effect in females than in males.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813177 | PMC |
http://dx.doi.org/10.3390/biomedicines12010214 | DOI Listing |
Natural killer (NK) cells have proven to be safe and effective immunotherapies, associated with favorable treatment responses in chronic myeloid leukemia (CML). Augmenting NK cell function with oncological drugs could improve NK cell-based immunotherapies. Here, we used a high-throughput drug screen consisting of over 500 small-molecule compounds to systematically evaluate the effects of oncological drugs on primary NK cells against CML cells.
View Article and Find Full Text PDFPharmaceutics
December 2024
Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children's at Diamond Children's Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA.
Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a).
View Article and Find Full Text PDFMicroorganisms
December 2024
Clinical Department of Dermatology, Medical University of Silesia, Marii Curie-Skłodowskiej 10, 41-800 Zabrze, Poland.
Syphilis, caused by the highly invasive pathogen , remains one of the oldest and most significant public health challenges. According to the World Health Organization (WHO), the number of new syphilis cases among adults aged 15-49 years in 2022 was estimated at approximately 8 million, with notable increases observed in Europe, the Americas, and Africa. The cellular immune response plays a critical role in combating this infection, and its insufficient activity may contribute to chronic progression of the disease.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
The identification of immune environments and cellular interactions in the colon microenvironment is essential for understanding the mechanisms of chronic inflammatory disease. Despite occurring in the same organ, there is a significant gap in understanding the pathophysiology of ulcerative colitis (UC) and colorectal cancer (CRC). Our study aims to address the distinct immunopathological response of UC and CRC.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!