AI Article Synopsis

  • This paper analyzes the effectiveness of four advanced AI models on Australian mammographic data using transfer learning and image enhancement techniques.
  • It utilizes a dataset of 1712 mammograms, with expert-annotated cancer cases to create subsets for evaluation, focusing on concordance levels among radiologists' annotations.
  • The study finds that applying the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm enhances AI model performance, with the highest accuracy achieved by the GMIC model in the high-concordance subset.

Article Abstract

This paper investigates the adaptability of four state-of-the-art artificial intelligence (AI) models to the Australian mammographic context through transfer learning, explores the impact of image enhancement on model performance and analyses the relationship between AI outputs and histopathological features for clinical relevance and accuracy assessment. A total of 1712 screening mammograms ( = 856 cancer cases and = 856 matched normal cases) were used in this study. The 856 cases with cancer lesions were annotated by two expert radiologists and the level of concordance between their annotations was used to establish two sets: a 'high-concordances subset' with 99% agreement of cancer location and an 'entire dataset' with all cases included. The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance of Globally aware Multiple Instance Classifier (GMIC), Global-Local Activation Maps (GLAM), I&H and End2End AI models, both in the pretrained and transfer learning modes, with and without applying the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm. The four AI models with and without transfer learning in the high-concordance subset outperformed those in the entire dataset. Applying the CLAHE algorithm to mammograms improved the performance of the AI models. In the high-concordance subset with the transfer learning and CLAHE algorithm applied, the AUC of the GMIC model was highest (0.912), followed by the GLAM model (0.909), I&H (0.893) and End2End (0.875). There were significant differences ( < 0.05) in the performances of the four AI models between the high-concordance subset and the entire dataset. The AI models demonstrated significant differences in malignancy probability concerning different tumour size categories in mammograms. The performance of AI models was affected by several factors such as concordance classification, image enhancement and transfer learning. Mammograms with a strong concordance with radiologists' annotations, applying image enhancement and transfer learning could enhance the accuracy of AI models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10814142PMC
http://dx.doi.org/10.3390/cancers16020322DOI Listing

Publication Analysis

Top Keywords

transfer learning
28
image enhancement
16
clahe algorithm
12
high-concordance subset
12
models
9
entire dataset
8
performance models
8
models high-concordance
8
enhancement transfer
8
transfer
7

Similar Publications

Article Synopsis
  • Understanding the associations between traits and microbial composition is critical for microbiome research, but machine learning models often struggle due to the data's high-dimensional, compositional, and imbalanced nature.
  • To tackle these challenges, a new data augmentation method called PhyloMix has been developed, which uses phylogenetic relationships to generate synthetic microbial samples that enhance model performance.
  • PhyloMix significantly outperforms other data augmentation techniques and is effective in both supervised learning and contrastive representation learning, demonstrating its broad applicability in microbiome studies.
View Article and Find Full Text PDF

Transformative change is needed across the food system to improve health and environmental outcomes. As food, nutrition, environmental and health data are generated beyond human scale, there is an opportunity for technological tools to support multifactorial, integrated, scalable approaches to address the complexities of dietary behaviour change. Responsible technology could act as a mechanistic conduit between research, policy, industry and society, enabling timely, informed decision making and action by all stakeholders across the food system.

View Article and Find Full Text PDF

Developing a decision support tool to predict delayed discharge from hospitals using machine learning.

BMC Health Serv Res

January 2025

Department of Industrial Engineering, Dalhousie University, PO Box 15000, Halifax, B3H 4R2, NS, Canada.

Background: The growing demand for healthcare services challenges patient flow management in health systems. Alternative Level of Care (ALC) patients who no longer need acute care yet face discharge barriers contribute to prolonged stays and hospital overcrowding. Predicting these patients at admission allows for better resource planning, reducing bottlenecks, and improving flow.

View Article and Find Full Text PDF

Purpose: The study aimed to develop a deep learning model for rapid, automated measurement of full-spine X-rays in adolescents with Adolescent Idiopathic Scoliosis (AIS). A significant challenge in this field is the time-consuming nature of manual measurements and the inter-individual variability in these measurements. To address these challenges, we utilized RTMpose deep learning technology to automate the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!