Alternative lengthening of telomeres (ALT) is a homologous recombination-based pathway utilized by 10-15% of cancer cells that allows cells to maintain their telomeres in the absence of telomerase. This pathway was originally discovered in the yeast and, for decades, yeast has served as a robust model to study ALT. Using yeast as a model, two types of ALT (-dependent and -independent) have been described. Studies in yeast have provided the phenotypic characterization of ALT survivors, descriptions of the proteins involved, and implicated break-induced replication (BIR) as the mechanism responsible for ALT. Nevertheless, many questions have remained, and answering them has required the development of new quantitative methods. In this review we discuss the historic aspects of the ALT investigation in yeast as well as new approaches to investigating ALT, including ultra-long sequencing, computational modeling, and the use of population genetics. We discuss how employing new methods contributes to our current understanding of the ALT mechanism and how they may expand our understanding of ALT in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813009 | PMC |
http://dx.doi.org/10.3390/biom14010113 | DOI Listing |
Chem Biol Interact
January 2025
Anhui Prevention and Control Engineering Research Center for Fatty Liver Disease, Hefei, Anhui, 230032,P. R. China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China. Electronic address:
Oxidative stress induced by excess ethanol is an important factor in the progression of alcoholic liver disease (ALD). In recent years, inhibiting Kelch-like ECH-associated protein 1 (KEAP1) to activate the antioxidant regulator Nuclear factor erythroid 2-related factor 2 (NRF2) has been considered an effective strategy for treating oxidative stress-related diseases, but its application in ALD remains insufficiently explored. This study aims to discover high-affinity inhibitors targeting the KEAP1 receptor.
View Article and Find Full Text PDFHum Immunol
January 2025
The Second Affiliated Hospital of Guangxi Medical University, Department of Nephrology, Nanning, Guangxi 530021, China. Electronic address:
Background: Microscopic polyangiitis (MPA) is a severe multisystem autoimmune disease featured by small-vessel vasculitis with few or no immune complex, also has a significant genetic predisposition. Growing evidence has confirmed that STAT4 gene is tightly associated with multiple autoimmune diseases, but its contribution to MPA onset is still elusive.
Objective: The aim was to investigated the association between STAT4 gene polymorphisms (rs7572482, rs7574865 and rs12991409) and MPA susceptibility in a Guangxi population of China.
Biomater Adv
January 2025
Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India. Electronic address:
Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China. Electronic address:
Mushroom poisoning, predominantly caused by α-amanitin, is a critical food safety concern in worldwide, with severe cases leading to hepatotoxicity and fatalities. This study delves into the hepatotoxic effects of α-amanitin, focusing on the NLRP3 inflammasome and PPAR-γ's regulatory role in inflammation. In vitro studies with L-02 cells showed that α-amanitin reduces cell viability and triggers NLRP3 inflammasome activation, increasing NF-κB phosphorylation and pro-inflammatory cytokines IL-18 and IL-1β.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Organ Transplantation, The Second Affiliated Hospital of Nanchang University, Minde Road No. 1, Nanchang, 330006, Jiangxi, China.
Multimorbidity, therapeutic complexity, and polypharmacy, which greatly increases the risk of drug-drug interactions (DDIs) and adverse medical outcomes, have become important and growing challenges in clinical practice. Statins are frequently prescribed to manage post-transplant dyslipidemia and reduce overall cardiovascular risk in solid organ transplant recipients. This study aimed to determine whether rosuvastatin has significant DDIs with tacrolimus (the first-line immunosuppressant) and to evaluate the risk of hepatotoxicity associated with concomitant therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!