In general, females present with stronger immune responses than males, but scarce data are available on sex-specific differences in immunometabolism. In this study, we characterized porcine peripheral blood mononuclear cell (PBMC) and granulocyte energy metabolism using a Bayesian C-metabolic flux analysis, which allowed precise determination of the glycolytic, pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA) fluxes, together with an assessment of the superoxide anion radical (O) production and mitochondrial O consumption. A principal component analysis allowed for identifying the cell type-specific patterns of metabolic plasticity. PBMCs displayed higher TCA cycle activity, especially glutamine-derived aspartate biosynthesis, which was directly related to mitochondrial respiratory activity and inversely related to O production. In contrast, the granulocytes mainly utilized glucose via glycolysis, which was coupled to oxidative PPP utilization and O production rates. The granulocytes of the males had higher oxidative PPP fluxes compared to the females, while the PBMCs of the females displayed higher non-oxidative PPP fluxes compared to the males associated with the T helper cell (CD3CD4) subpopulation of PBMCs. The observed sex-specific differences were not directly attributable to sex steroid plasma levels, but we detected an inverse correlation between testosterone and aldosterone plasma levels and showed that aldosterone levels were related with non-oxidative PPP fluxes of both cell types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813356PMC
http://dx.doi.org/10.3390/biom14010098DOI Listing

Publication Analysis

Top Keywords

ppp fluxes
12
c-metabolic flux
8
flux analysis
8
cell type-specific
8
pentose phosphate
8
phosphate pathway
8
sex-specific differences
8
analysis allowed
8
displayed higher
8
oxidative ppp
8

Similar Publications

The demand of plasmid DNA (pDNA) as a key element for gene therapy products, as well as mRNA and DNA vaccines, is increasing together with the need for more efficient production processes. An engineered strain lacking the phosphotransferase system and the pyruvate kinase A gene has been shown to produce more pDNA than its parental strain. With the aim of improving pDNA production in the engineered strain, several strategies to increase the flux to the pentose phosphate pathway (PPP) were evaluated.

View Article and Find Full Text PDF

In general, females present with stronger immune responses than males, but scarce data are available on sex-specific differences in immunometabolism. In this study, we characterized porcine peripheral blood mononuclear cell (PBMC) and granulocyte energy metabolism using a Bayesian C-metabolic flux analysis, which allowed precise determination of the glycolytic, pentose phosphate pathway (PPP), and tricarboxylic acid cycle (TCA) fluxes, together with an assessment of the superoxide anion radical (O) production and mitochondrial O consumption. A principal component analysis allowed for identifying the cell type-specific patterns of metabolic plasticity.

View Article and Find Full Text PDF

The pentose phosphate pathway (PPP) plays a key role in the cellular regulation of immune function; however, little is known about the interplay of metabolic adjustments in granulocytes, especially regarding the non-oxidative PPP. For the determination of metabolic mechanisms within glucose metabolism, we propose a novel set of measures for C-metabolic flux analysis based on ex vivo parallel tracer experiments ([1,2-C]glucose, [U-C]glucose, [4,5,6-C]glucose) and gas chromatography-mass spectrometry labeling measurements of intracellular metabolites, such as sugar phosphates and their fragments. A detailed constraint analysis showed that the permission range for net and irreversible fluxes was limited to a three-dimensional space.

View Article and Find Full Text PDF

Heat Transfer Enhancement in Tree-Structured Polymer Linked Gold Nanoparticle Networks.

J Phys Chem Lett

November 2023

Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.

Human brains use a tree-like neuron network for information processing at high efficiency and low energy consumption. Tree-like structures have also been engineered to enhance mass and heat transfer in various applications. In this work, we reveal the heat transfer mechanism in tree-structured polymer linked gold nanoparticle (AuNP) networks using atomistic simulations.

View Article and Find Full Text PDF

Metabolic fluxes (MF) serve as the functional phenotypes of biochemical processes and are crucial to describe the distribution of precursors within metabolic networks. There is a lack of experimental observations for carbon flux towards lipids, which is important for biodiesel generation. Here, the accumulation of lipid, and MF in Tetradesmus obliquus under nitrogen deficiency stress (NF) using a C isotope tracer at different time intervals was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!