Genetic Dissection of BDNF and TrkB Expression in Glial Cells.

Biomolecules

Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA.

Published: January 2024

The brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase receptor B (TrkB) are widely expressed in the central nervous system. It is well documented that neurons express BDNF and full-length TrkB (TrkB.FL) as well as a lower level of truncated TrkB (TrkB.T). However, there are conflicting reports regarding the expression of BDNF and TrkB in glial cells, particularly microglia. In this study, we employed a sensitive and reliable genetic method to characterize the expression of BDNF and TrkB in glial cells in the mouse brain. We utilized three Cre mouse strains in which Cre recombinase is expressed in the same cells as BDNF, TrkB.FL, or all TrkB isoforms, and crossed them to Cre-dependent reporter mice to label BDNF- or TrkB-expressing cells with soma-localized EGFP. We performed immunohistochemistry with glial cell markers to examine the expression of BDNF and TrkB in microglia, astrocytes, and oligodendrocytes. Surprisingly, we found no BDNF- or TrkB-expressing microglia in examined CNS regions, including the somatomotor cortex, hippocampal CA1, and spinal cord. Consistent with previous studies, most astrocytes only express TrkB.T in the hippocampus of adult brains. Moreover, there are a small number of astrocytes and oligodendrocytes that express BDNF in the hippocampus, the function of which is to be determined. We also found that oligodendrocyte precursor cells, but not mature oligodendrocytes, express both TrkB.FL and TrkB.T in the hippocampus of adult mice. These results not only clarify the expression of BDNF and TrkB in glial cells but also open opportunities to investigate previously unidentified roles of BDNF and TrkB in astrocytes and oligodendrocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813193PMC
http://dx.doi.org/10.3390/biom14010091DOI Listing

Publication Analysis

Top Keywords

bdnf trkb
24
glial cells
16
expression bdnf
16
trkb glial
12
astrocytes oligodendrocytes
12
bdnf
10
trkb
10
express bdnf
8
bdnf- trkb-expressing
8
trkbt hippocampus
8

Similar Publications

Methamphetamine inhibits huntingtin-associated protein 1-mediated tyrosine receptor kinase B endocytosis resulting the neuroprotective dysfunction of brain-derived neurotrophic factor.

Toxicology

January 2025

School of Forensic Medicine, National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, Yunnan 650500, China. Electronic address:

Methamphetamine (METH), a synthetic stimulant, has seen an escalating abuse situation globally over the past decade. Although the molecular mechanism underlying METH-induced neurotoxicity has been explored, the dysfunction of brain-derived neurotrophic factor (BDNF) neuroprotection in the context of METH neurotoxicity remains insufficiently understood. Our previous studies have found that METH induced neurotoxicity and BDNF expression in rat primary neurons, necessitating further research into this paradox.

View Article and Find Full Text PDF

Indoleamine 2, 3-dioxygenase 1 inhibition mediates the therapeutic effects in Parkinson's disease mice by modulating inflammation and neurogenesis in a gut microbiota dependent manner.

Exp Neurol

January 2025

Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Abnormal tryptophan metabolism is closely linked with neurological disorders. Research has shown that indoleamine 2,3-dioxygenase 1 (IDO-1), the first rate-limiting enzyme in tryptophan degradation, is upregulated in Parkinson's disease (PD). However, the precise role of IDO-1 in PD pathogenesis remains elusive.

View Article and Find Full Text PDF

Aging is associated with declines in memory function and significant change in gut microbiota. In this study, we investigated how exercise affects age-related memory decline and inflammation, and gut microbiota diversity. Bl6 mice were divided into control, control and exercise, old, and old and exercise groups.

View Article and Find Full Text PDF

Tumor necrosis factor alpha (TNF-α) is a well-known pro-inflammatory cytokine originally recognized for its ability to induce apoptosis and cell death. However, recent research has revealed that TNF-α also plays a crucial role as a mediator of cell survival, influencing a wide range of cellular functions. The signaling of TNF-α is mediated through two distinct receptors, TNFR1 and TNFR2, which trigger various intracellular pathways, including NF-κB, JNK, and caspase signaling cascades.

View Article and Find Full Text PDF

Empagliflozin Mitigates PTZ-Induced Seizures in Rats: Modulating Npas4 and CREB-BDNF Signaling Pathway.

J Neuroimmune Pharmacol

January 2025

Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Empagliflozin (EMPA) is one of the sodium/glucose cotransporter 2 (SGLT2) inhibitors that has been recently approved for the treatment of diabetes mellitus type II. Recently, EMPA has shown protective effects in different neurological disorders, besides its antidiabetic activity. Kindling is a relevant model to study epilepsy and neuroplasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!