Ocular surface disease (OSD) associated with topical glaucoma drugs is a common issue impacting treatment adherence. We aimed to identify conjunctival transcriptomic changes in glaucoma and dry eye patients, comparing them to healthy controls. Bulbar conjunctival specimens were collected via impression cytology from 33 patients treated for glaucoma, 9 patients with dry eye, and 14 healthy controls. RNA extraction and bulk RNA sequencing were performed, followed by bioinformatics analysis to detect gene dysregulation. Ingenuity pathways analysis (IPA) identified pathways and biological processes associated with these transcriptomic changes. Sequencing analysis revealed 200 modified genes in glaucoma patients compared to healthy individuals, 233 differentially expressed genes in dry eye patients versus controls, and 650 genes in treated versus dry eye samples. In glaucoma patients, 79% of altered pathways were related to host defense, while dry eye patients showed a 39% involvement of host response, 15% in cellular proliferation and integrity, and 16% of mitochondrial dysfunction. These findings were validated through qRT-PCR. Glaucoma patients showed an intensified conjunctival immune response as a potential cause of OSD, whereas in dry eye patients, in addition to the immune response, other mechanisms such as mitochondrial dysfunction or reduced cellular proliferation were observed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813521PMC
http://dx.doi.org/10.3390/biom14010030DOI Listing

Publication Analysis

Top Keywords

dry eye
24
eye patients
16
glaucoma patients
16
healthy controls
12
patients
9
transcriptomic changes
8
cellular proliferation
8
mitochondrial dysfunction
8
immune response
8
dry
7

Similar Publications

How to Fabricate Hyaluronic Acid for Ocular Drug Delivery.

Pharmaceutics

December 2024

Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea.

This review aims to examine existing research on the development of ocular drug delivery devices utilizing hyaluronic acid (HA). Renowned for its exceptional biocompatibility, viscoelastic properties, and ability to enhance drug bioavailability, HA is a naturally occurring biopolymer. The review discussed specific mechanisms by which HA enhances drug delivery, including prolonging drug residence time on ocular surfaces, facilitating controlled drug release, and improving drug penetration through ocular tissues.

View Article and Find Full Text PDF

Background/objectives: Dry eye disease (DED) significantly impairs quality of life, affecting physical, social, and psychological well-being, as well as reducing workplace productivity. While lutein and zeaxanthin supplements have been shown to improve ocular health, existing research often overlooks the efficacy of lower dosages and shorter durations of supplementation. This study investigated the effects of combined supplementation with lutein, zeaxanthin, and elderberries in 110 voluntary participants through a randomized controlled trial.

View Article and Find Full Text PDF

Targeted Therapy for Severe Sjogren's Syndrome: A Focus on Mesenchymal Stem Cells.

Int J Mol Sci

December 2024

Departments of Genetics, Microbiology and Immunology, Center for Research on Harmful Effects of Biological and Chemical Hazards, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia.

Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by the infiltration of lymphocytes on salivary and lacrimal glands, resulting in their dysfunction. Patients suffering from severe pSS have an increased risk of developing multi-organ dysfunction syndrome due to the development of systemic inflammatory response, which results in immune cell-driven injury of the lungs, kidneys, liver, and brain. Therapeutic agents that are used for the treatment of severe pSS encounter various limitations and challenges that can impact their effectiveness.

View Article and Find Full Text PDF

Quercetin Alleviates All--Retinal-Induced Photoreceptor Apoptosis and Retinal Degeneration by Inhibiting the ER Stress-Related PERK Signaling.

Int J Mol Sci

December 2024

Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.

All--retinal (atRAL)-induced photoreceptor atrophy and retinal degeneration are hallmark features of dry age-related macular degeneration (AMD) and Stargardt disease type 1 (STGD1). The toxicity of atRAL is closely related to the generation of reactive oxygen species (ROS). Quercetin, a natural product, is known for its potent antioxidant properties; however, its effects in mitigating atRAL-mediated retinal damage remains unclear.

View Article and Find Full Text PDF

Ocular diseases such as cataract, refractive error, age-related macular degeneration, glaucoma, and diabetic retinopathy significantly impact vision and quality of life worldwide. Despite advances in conventional treatments, challenges like limited bioavailability, poor patient compliance, and invasive administration methods hinder their effectiveness. Nanomedicine offers a promising solution by enhancing drug delivery to targeted ocular tissues, enabling sustained release, and improving therapeutic outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!