A spectroscopic investigation of beeswax adulteration by paraffin and/or stearic acid was undertaken via Attenuated Total Reflectance Infra-Red spectroscopy (ATR-IR) combined with multivariate statistical analyses. Principal Component Analysis (PCA) was successfully applied for the first time as an exploratory tool for the differentiation among pure beeswax and adulterated beeswax by paraffin and stearic acid with detection limits (LOD) of ~5% and 1%, respectively. Partial Least Square (PLS) modelling was used to build chemometric models based on beeswax/paraffin and beeswax/stearic acid calibration mixtures and subsequently used to predict concentrations of paraffin and stearic acid on a set of unknown test samples. PLS predictions demonstrated that beeswax adulteration by paraffin is much more prominent (74%) than the one by stearic acid (26%) and that commercial beeswax products (candles, pearls, blocks, etc.) are more prone to adulteration (27%) than honeycomb-type samples (12.5%).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10814946PMC
http://dx.doi.org/10.3390/foods13020245DOI Listing

Publication Analysis

Top Keywords

stearic acid
20
beeswax adulteration
12
adulteration paraffin
12
paraffin stearic
12
acid
6
paraffin
5
stearic
5
beeswax
5
assessment beeswax
4
adulteration
4

Similar Publications

Ferulic acid (FA) is a phenolic compound obtained naturally and is a versatile antioxidant identified for its potential in managing hypertension. However, its application is constrained due to its classification as a BCS Class IV moiety. To address this, we concentrated on improving its solubility and permeability by developing nanostructured lipid carriers (NLCs) of FA using emulsification probe sonication technique.

View Article and Find Full Text PDF

Introduction: Long-term fasting (LF) activates an adaptative response to switch metabolic fuels from food glucose to lipids stored in adipose tissues. The increase in free fatty acid (FFA) oxidation during fasting triggers health benefits. We questioned if the changes in lipid metabolism during LF could affect lipids in cell membranes in humans.

View Article and Find Full Text PDF

In response to the demand for epoxy-based dielectric substrates with low dielectric loss in high-frequency and high-speed signal transmission applications, this study presents a surface-engineered filler material. Utilizing ball-milling, surface-modified aluminum flakes containing organic (stearic acid) and inorganic (aluminum oxide) coatings are developed. Incorporation of the filler into the epoxy matrix results in a significant increase in dielectric permittivity, by nearly 5 times (from 4.

View Article and Find Full Text PDF

Differentially expressed messenger RNA isoforms in beef cattle skeletal muscle with different fatty acid profiles.

Meat Sci

January 2025

São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil. Electronic address:

This study aimed to identify mRNA isoforms that were expressed differently in the muscle tissue of Nellore cattle based on their intramuscular fatty acid profile. Forty-eight young bulls were used to quantify beef fatty acids (FA) and perform RNA sequencing analysis. The young bulls were divided into three different groups based on quantifying FA using k-means analysis.

View Article and Find Full Text PDF

Phanerochaete chrysosporium hyphae bio-crack, endocytose and metabolize plastic films.

J Hazard Mater

January 2025

School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China.

Numerous studies have focused on the effect and mechanism of plastic degradation; due to their high persistence, petroleum-based plastics are difficult for microbes to mineralize. Although such plastics have been demonstrated to be mineralized by white rot fungus, the reactions at the molecular level remain unknown. Here, we show the whole mineralization model of polyethylene film, that can be summarized as follows: 1) white rot fungus colonizes on polyethylene film, using additives as dissimilated carbon sources; 2) the fungus secretes extracellular enzymes protein, combining with stearic acid as electron donor, causes oxidation and cracking of polyethylene film; and 3) partial dissociated sub-microplastic debris access to cells, further oxidizes in sequential actions of intracellular enzymes, and ultimately mineralize via β-oxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!