This study's CT scan-based morphometric analysis of 50 adult dogs explored the relationship between skull shape variations (determined by the skull index, SI), optic chiasm, optic canals, and orbital shape. Dogs were classified as brachycephalic (SI ≥ 59), mesocephalic (SI ≥ 51 but <59), and dolichocephalic (SI < 51). No significant age or weight differences were observed. Skull lengths (brachycephalic: 11.39 ± 1.76 cm, mesocephalic: 15.00 ± 2.96 cm, dolichocephalic: 17.96 ± 3.44 cm) and facial lengths (brachycephalic: 3.63 ± 1.00 cm, mesocephalic: 6.46 ± 1.55 cm, dolichocephalic: 8.23 ± 1.03 cm) varied significantly, with shorter orbital depths (brachycephalic: 2.58 ± 0.42 cm, mesocephalic: 3.19 ± 0.65 cm, dolichocephalic: 3.61 ± 0.77 cm) in brachycephalic dogs. The optic chiasm-to-inion horizontal length ratio to cranial horizontal length positively correlated with the SI (r = 0.883, < 0.001), while the ratio to neurocranial length showed no SI correlation (range: 55.5-75.0). Brachycephalic breeds had a significantly wider optic canal angle (93.74 ± 16.00°), along with broader lacrimal-zygomatic and zygomatic frontal process angles. These findings highlight the zygomatic bone's role in influencing breed-specific orbital variations by connecting the face to the neurocranium, projecting the orbital rim outward and forward with facial shortening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10812588 | PMC |
http://dx.doi.org/10.3390/ani14020197 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!