AI Article Synopsis

  • The Bacillus genus plays a vital role in modern agriculture by promoting plant growth and sustainability through various mechanisms such as nitrogen fixation, phosphate solubilization, and growth hormone production.
  • These bacteria also serve as biocontrol agents, helping protect plants from diseases and enhancing soil fertility when used with biochar.
  • Advances in molecular biology and biotechnology have led to the development of Bacillus-based biofertilizers and biopesticides, offering sustainable alternatives to chemical inputs and supporting climate-resilient agriculture.

Article Abstract

The Bacillus genus has emerged as an important player in modern agriculture, revolutionizing plant growth promotion through recent advances. This review provides a comprehensive overview of the critical role Bacillus species play in boosting plant growth and agricultural sustainability. Bacillus genus bacteria benefit plants in a variety of ways, according to new research. Nitrogen fixation, phosphate solubilization, siderophore production, and the production of growth hormones are examples of these. Bacillus species are also well-known for their ability to act as biocontrol agents, reducing phytopathogens and protecting plants from disease. Molecular biology advances have increased our understanding of the complex interplay between Bacillus species and plants, shedding light on the genetic and metabolic underpinnings of these interactions. Furthermore, novel biotechnology techniques have enabled the development of Bacillus-based biofertilizers and biopesticides, providing sustainable alternatives to conventional chemical inputs. Apart from this, the combination of biochar and Bacillus species in current biotechnology is critical for improving soil fertility and encouraging sustainable agriculture through enhanced nutrient retention and plant growth. This review also emphasizes the Bacillus genus bacteria's ability to alleviate environmental abiotic stresses such as drought and salinity, hence contributing to climate-resilient agriculture. Moreover, the authors discuss the challenges and prospects associated with the practical application of Bacillus-based solutions in the field. Finally, recent advances in Bacillus-mediated plant growth promotion highlight their critical significance in sustainable agriculture. Understanding these improvements is critical for realizing the full potential of Bacillus genus microorganisms to address current global food production concerns.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-024-03903-5DOI Listing

Publication Analysis

Top Keywords

plant growth
20
bacillus genus
16
bacillus species
16
advances bacillus-mediated
8
bacillus-mediated plant
8
bacillus
8
growth promotion
8
sustainable agriculture
8
growth
6
plant
5

Similar Publications

Perennial grasses' reproductive phenology profoundly impacts plant morphogenesis, biomass production, and perenniality in natural ecosystems and cultivated grasslands. Complex interactions between vegetative and reproductive development complicate grass phenology prediction for various environments and genotypes. This work aims to analyse genetic × environment interactions effects on tiller growth and reproductive development in Three perennial ryegrass cultivars, Bronsyn, Carvalis, and Tryskal, were grown from seedling to heading under four inductive conditions.

View Article and Find Full Text PDF

Examining ozone effects on the tropical C crop .

PeerJ

January 2025

College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University of North Queensland, Cairns, Queensland, Australia.

Ozone (O), a major air pollutant, can negatively impact plant growth and yield. While O impacts have been widely documented in crops such as wheat and soybean, few studies have looked at the effects of O on sorghum, a C plant and the fifth most important cereal crop worldwide. We exposed grain sorghum ( cv.

View Article and Find Full Text PDF

Examining the impacts of natural and anthropogenic influences on aquatic macrophytes in shallow lakes is crucial for their effective restoration and management. However, there is a lack of direct evidence regarding past species composition or detailed and continuous evidence of recent changes in aquatic macrophyte communities. This study utilized plant macrofossil remains deposited in the sediment, combined with macrophyte surveys from 1983 to 2010, to reconstruct the historical changes in the macrophyte community over approximately 160 years in Lake Weishan, a sub-lake of Lake Nansi located in the lower Yellow River (Huanghe River) Basin, northern China.

View Article and Find Full Text PDF

Unlabelled: Chickpea (. L) holds the esteemed position of being the second most cultivated and consumed legume crop globally. Nevertheless, both biotic and abiotic constraints limit chickpea production.

View Article and Find Full Text PDF

Traditional uses, botanical description, phytochemistry, and pharmacological activities of : a review.

Front Pharmacol

January 2025

Faculty of Pharmaceutical and Allied Health Sciences, Shifa college of Pharmaceutical Sciences (SCPS), Shifa Tameer-e-Millat University, Islamabad, Pakistan.

Background: is an herbaceous herb belonging to the Phytolaccaceae family. The plant has a long history of usage in traditional medicine for treating a variety of ailments including infectious diseases, edema, inflammation, gastric, and abdominal distress. The traditional use, phytochemistry, and pharmacological properties of are outlined in this article.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!