Aims: The SOX10 transcription factor is important for the maturation of oligodendrocytes involved in central nervous system (CNS) myelination. Currently, very little information exists about its expression and potential use in CNS tumour diagnoses. The aim of our study was to characterize the expression of SOX10 in a large cohort of CNS tumours and to evaluate its potential use as a biomarker.

Methods: We performed immunohistochemistry (IHC) for SOX10 and OLIG2 in a series of 683 cases of adult- and paediatric-type CNS tumours from different subtypes. The nuclear immunostaining results for SOX10 and OLIG2 were scored as positive (≥10% positive tumour cells) or negative.

Results: OLIG2 and SOX10 were positive in diffuse midline gliomas (DMG), H3-mutant, and EZHIP-overexpressed. However, in all DMG, EGFR-mutant, SOX10 was constantly negative. In diffuse paediatric-type high-grade gliomas (HGG), all RTK1 cases were positive for both OLIG2 and SOX10. RTK2 cases were all negative for both OLIG2 and SOX10. MYCN cases variably expressed OLIG2 and were all immunonegative for SOX10. In glioblastoma, IDH-wildtype, OLIG2 was mostly positive, but SOX10 was variably expressed, depending on the epigenetic subtype. All circumscribed astrocytic gliomas were positive for both OLIG2 and SOX10 except pleomorphic xanthoastrocytomas, astroblastomas, MN1-altered, and subependymal giant cell astrocytomas. SOX10 was negative in ependymomas, meningiomas, pinealoblastomas, choroid plexus tumours, intracranial Ewing sarcomas, and embryonal tumours except neuroblastoma, FOXR2-activated.

Conclusion: To conclude, SOX10 can be incorporated into the IHC panel routinely used by neuropathologists in the diagnostic algorithm of embryonal tumours and for the subtyping of paediatric and adult-type HGG.

Download full-text PDF

Source
http://dx.doi.org/10.1111/his.15148DOI Listing

Publication Analysis

Top Keywords

olig2 sox10
20
sox10
14
cns tumours
12
olig2
9
sox10 olig2
8
positive olig2
8
variably expressed
8
embryonal tumours
8
tumours
6
positive
6

Similar Publications

In the vertebrate nervous system, neurogenesis generally precedes gliogenesis. The mechanisms driving the switch in cell type production and generation of the correct proportion of cell types remain unclear. Here, we show that Fgf20 signalling patterns progenitors to induce the switch from neurogenesis to oligodendrogenesis in the zebrafish hindbrain.

View Article and Find Full Text PDF

Astrocytes are key components of the neurovascular unit. While we have recently identified Olig2+ astrocyte progenitors (ASPs) in the developing mouse dentate gyrus (DG), their molecular signature remains incompletely characterized. Here we demonstrate that Olig2+ ASPs predominantly express brain lipid-binding protein (BLBP), while only a small population of them expresses -GFP.

View Article and Find Full Text PDF

Glial cell derived pathway directs regenerating optic nerve axons toward the CNS midline.

bioRxiv

October 2024

Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.

Several RGC intrinsic signaling pathways have been shown to enhance RGC survival and RGC axonal growth after optic nerve injury. Yet an unresolved challenge for regenerating RGC axons is to properly navigate the optic chiasm located at the Central Nervous System midline. Here, we use live-cell imaging in larval zebrafish to show that regrowing RGC axons initiate growth toward the midline and extend along a trajectory similar to their original projection.

View Article and Find Full Text PDF

Spirulina platensis is rich in nutritional profile and a great source of prebiotic with neuro-protective properties. Stress is an inevitable part of today's lives, affecting people differently, and individuals with resilient adaptations are less vulnerable to it. The present study aims at evaluating Spirulina as a prebiotic supplement in the early life of zebrafish to cope with chronic unpredictable stress (CUS) in its later stage of life.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is the most common primary malignant brain tumor. The aim of this study was to elucidate the role of microenvironment and intrinsic T-type calcium channels (Cav3) in regulating tumor growth and progression.

Methods: We grafted syngeneic GBM cells into Cav3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!