Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose a hybrid technique that employs artificial intelligence (AI)-based segmentation and machine learning classification using multiple features extracted from the foveal avascular zone (FAZ)-a retinal biomarker for Alzheimer's disease-to improve the disease diagnostic performance. Imaging data of optical coherence tomography angiography from 37 patients with Alzheimer's disease and 48 healthy controls were investigated. The presence or absence of brain amyloids was confirmed using amyloid positron emission tomography. In the superficial capillary plexus of the angiography scans, the FAZ was automatically segmented using an AI method to extract multiple biomarkers (area, solidity, compactness, roundness, and eccentricity), which were paired with clinical data (age and sex) as common correction variables. We used a light-gradient boosting machine (a light-gradient boosting machine is a machine learning algorithm based on trees utilizing gradient boosting) to diagnose Alzheimer's disease by integrating the corresponding multiple radiomic biomarkers. Fivefold cross-validation was applied for analysis, and the diagnostic performance for Alzheimer's disease was determined by the area under the curve. The proposed hybrid technique achieved an area under the curve of [Formula: see text]%, outperforming the existing single-feature (area) criteria by over 13%. Furthermore, in the holdout test set, the proposed technique exhibited a 14% improvement compared to single features, achieving an area under the curve of 72.0± 4.8%. Based on these facts, we have demonstrated the effectiveness of our technology in achieving significant performance improvements in FAZ-based Alzheimer's diagnosis research through the use of multiple radiomic biomarkers (area, solidity, compactness, roundness, and eccentricity).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10810355 | PMC |
http://dx.doi.org/10.1038/s41598-024-51612-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!