The blood‒brain barrier (BBB) acts as a hindrance to drug therapy reaching the brain. With an increasing incidence of neurovascular diseases and brain cancer metastases, there is a need for an ideal in vitro model to develop novel methodologies for enhancing drug delivery to the brain. Here, we established a multicellular human brain spheroid model that mimics the BBB both architecturally and functionally. Within the spheroids, endothelial cells and pericytes localized to the periphery, while neurons, astrocytes, and microglia were distributed throughout. Ultrasound-targeted microbubble cavitation (UTMC) is a novel noninvasive technology for enhancing endothelial drug permeability. We utilized our three-dimensional (3D) model to study the feasibility and mechanisms regulating UTMC-induced hyperpermeability. UTMC caused a significant increase in the penetration of 10 kDa Texas red dextran (TRD) into the spheroids, 100 µm beyond the BBB, without compromising cell viability. This hyperpermeability was dependent on UTMC-induced calcium (Ca) influx and endothelial nitric oxide synthase (eNOS) activation. Our 3D brain spheroid model, with its intact and functional BBB, offers a valuable platform for studying the bioeffects of UTMC, including effects occurring spatially distant from the endothelial barrier.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803331 | PMC |
http://dx.doi.org/10.1038/s41598-023-50203-3 | DOI Listing |
Beta-propeller Protein Associated Neurodegeneration (BPAN) is a devastating neurodevelopmental and neurodegenerative disease linked to variants in . Currently, there is no cure or disease altering treatment for this disease. This is, in part, due to a lack of insight into early phenotypes of BPAN progression and 's role in establishing and maintaining neurological function.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Institute of Urology, Beijing Municipal Health Commission, Beijing 100050, China. Electronic address:
We previously established an effective method to ameliorate erectile dysfunction (ED) using intracavernous injection (ICI) of mesenchymal stem cell (MSC) microspheres. However, the expression of a key neurotrophic factor, brain-derived neurotrophic factor (BDNF), was low in both MSCs and MSC microspheres, restricting the associated neural repair. Based on the hypoxia and oxidative stress microenvironments within cell spheroids and lesion areas, BDNF-expressing nanocomplexes that are dual-responsive to hypoxia and reactive oxygen species were designed to modify MSCs, achieving high BDNF expression in MSC spheroids.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurosurgery, China Medical University Hospital, 2 Hsueh‑Shih Road, Taichung City, 40402, Taiwan, ROC.
Treating metastatic brain tumors remains a significant challenge. This study introduces and applies the Patient-Derived Tumor Spheroid (PDTS) system, an ex vivo model for precision drug testing on metastatic brain tumor. The PDTS system utilizes a decellularized extracellular matrix (dECM) derived from adipose tissue, combined with the tumor cells, to form tumor spheroids.
View Article and Find Full Text PDFACS Cent Sci
December 2024
Leiden Institute of Chemistry, Universiteit Leiden, Einsteinweg 55, 2333 CC Leiden, Netherlands.
The blood-brain barrier (BBB) presents one of the main obstacles to delivering anticancer drugs in glioblastoma. Herein, we investigated the potential of a series of cyclic ruthenium-peptide conjugates as photoactivated therapy candidates for the treatment of this aggressive tumor. The three compounds studied, , , and ([Ru(Phphen) Ac-XRGDX-NH)]Cl with Phphen = 4,7-diphenyl-1,10-phenanthroline and X, X = His or Met), include an integrin-targeted pentapeptide coordinated to a ruthenium warhead via two photoactivated ruthenium-X bonds.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Center of Nanoscience, Nanotechnology, and Innovation - CeNano(2)I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Brazil. Electronic address:
Regrettably, glioblastoma multiforme (GBM) remains the deadliest form of brain cancer, where the early diagnosis plays a pivotal role in the patient's therapy and prognosis. Hence, we report for the first time the design, synthesis, and characterization of new hybrid organic-inorganic stimuli-responsive nanoplexes (NPX) for bioimaging and killing brain cancer cells (GBM, U-87). These nanoplexes were built through coupling two nanoconjugates, produced using a facile, sustainable, green aqueous colloidal process ("bottom-up").
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!