The conditional assembly of split-protein pairs to modulate biological activity is commonly achieved by fusing split-protein fragments to dimerizing components that bring inactive pairs into close proximity in response to an exogenous trigger. However, current methods lack full spatial and temporal control over reconstitution, require sustained activation and lack specificity. Here light-activated SpyLigation (LASL), based on the photoregulation of the covalent SpyTag (ST)/SpyCatcher (SC) peptide-protein reaction, assembles nonfunctional split fragment pairs rapidly and irreversibly in solution, in engineered biomaterials and intracellularly. LASL introduces an ortho-nitrobenzyl(oNB)-caged lysine into SC's reactive site to generate a photoactivatable SC (pSC). Split-protein pairs of interest fused to pSC and ST are conditionally assembled via near-ultraviolet or pulsed near-infrared irradiation, as the uncaged SC can react with ST to ligate appended fragments. We describe procedures for the efficient synthesis of the photocaged amino acid that is incorporated within pSC (<5 days) as well as the design and cloning of LASL plasmids (1-4 days) for recombinant protein expression in either Escherichia coli (5-6 days) or mammalian cells (4-6 days), which require some prior expertise in protein engineering. We provide a chemoenzymatic scheme for appending bioorthogonal reactive handles onto E. coli-purified pSC protein (<4 days) that permits LASL component incorporation and patterned protein activation within many common biomaterial platforms. Given that LASL is irreversible, the photolithographic patterning procedures are fast and do not require sustained light exposure. Overall, LASL can be used to interrogate and modulate cell signaling in various settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288621 | PMC |
http://dx.doi.org/10.1038/s41596-023-00938-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!