Phragmites australis is exhibiting extensive dieback in the Lower Mississippi River Delta (MRD). We explored the potential for restoration of these marshes by (1) characterizing the chemical profiles of soils collected from healthy and dieback stands of P. australis and from sites recently created from dredge-disposal soils that were expected to be colonized by P. australis and (2) experimentally testing the effects of these soil types on the growth of three common P. australis lineages, Delta, Gulf and European. Soil chemical properties included Al, Ca, Cu, Fe, K, Mg, Mn, Na, P, S, Zn, % organic matter, % carbon, % nitrogen, and pH. Dieback soils were characterized by higher % organic matter, % carbon, % nitrogen, and higher S and Fe concentrations, whereas healthy soils had higher Cu, Al, P and Zn. In comparison, dredge sites were low in nutrients and organic matter compared to healthy soils. Rhizomes of each P. australis lineage were planted in each soil type in a common garden and greenhouse and allowed to grow for five months. Aboveground biomass was 16% lower in dieback and 44% lower in dredge soils than in healthy soils. However, we could detect no significant differences in response to soil types among lineages. Although dredge and dieback sites are not optimal for P. australis growth, plants can thrive on these soils, and we recommend restorative measures be initiated as soon as possible to minimize soil erosion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803353 | PMC |
http://dx.doi.org/10.1038/s41598-024-52488-4 | DOI Listing |
Langmuir
January 2025
Hubei Key Laboratory of Oil and Gas Exploration and Development Theory and Technology (China University of Geosciences), Wuhan 430074, China.
The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Chemistry and Materials Science, College of Environmental and Resource Sciences, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.
The glassy state of inorganic-organic hybrid metal halides combines their excellent optoelectronic properties with the outstanding processability of glass, showcasing unique application potential in solar devices, display technologies, and plastic electronics. Herein, by tailoring the organic cation from -phenylpiperazine to dimethylamine gradually, four types of zero-dimensional antimony halides are obtained with various optical and thermal properties. The guest water molecules in crystal (-phenylpiperazine)SbCl·Cl·5HO lead to the largest distortion of the Sb-halogen unit, resulting in the red emission different from the yellow emission of other compounds.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, Key Laboratory of Structural Chemistry, CHINA.
One-step adsorptive purification of ethylene (C2H4) from ternary mixture comprising of acetylene (C2H2), ethylene (C2H4) and carbon dioxide (CO2) is a great challenge in the chemical industry. Herein, a microporous metal-organic framework (FJI-H38) has been reported, which possesses a high density of electronegative O/N binding sites and appropriate pore size. Notably, at 0.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Renewable Resources, University of Alberta, Edmonton, Canada.
Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, P. R. China.
Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!