Introduction: Artificial intelligence and large language models (LLMs) have emerged as potentially disruptive technologies in healthcare. In this study GPT-3.5, an accessible LLM, was assessed for its accuracy and reliability in performing guideline-based evaluation of neuraxial bleeding risk in hypothetical patients on anticoagulation medication. The study also explored the impact of structured prompt guidance on the LLM's performance.

Methods: A dataset of 10 hypothetical patient stems and 26 anticoagulation profiles (260 unique combinations) was developed based on American Society of Regional Anesthesia and Pain Medicine guidelines. Five prompts were created for the LLM, ranging from minimal guidance to explicit instructions. The model's responses were compared with a "truth table" based on the guidelines. Performance metrics, including accuracy and area under the receiver operating curve (AUC), were used.

Results: Baseline performance of GPT-3.5 was slightly above chance. With detailed prompts and explicit guidelines, performance improved significantly (AUC 0.70, 95% CI (0.64 to 0.77)). Performance varied among medication classes.

Discussion: LLMs show potential for assisting in clinical decision making but rely on accurate and relevant prompts. Integration of LLMs should consider safety and privacy concerns. Further research is needed to optimize LLM performance and address complex scenarios. The tested LLM demonstrates potential in assessing neuraxial bleeding risk but relies on precise prompts. LLM integration should be approached cautiously, considering limitations. Future research should focus on optimization and understanding LLM capabilities and limitations in healthcare.

Download full-text PDF

Source
http://dx.doi.org/10.1136/rapm-2023-104868DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
neuraxial bleeding
8
bleeding risk
8
guidelines performance
8
llm
6
performance
5
danger danger
4
danger gaston
4
gaston labat!
4
labat! zero-shot
4

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation.

View Article and Find Full Text PDF

Evaluation of Chatbots in the Emergency Management of Avulsion Injuries.

Dent Traumatol

January 2025

Department of Paediatric Dentistry, Faculty of Dentistry, Mersin University, Mersin, Turkey.

Background: This study assessed the accuracy and consistency of responses provided by six Artificial Intelligence (AI) applications, ChatGPT version 3.5 (OpenAI), ChatGPT version 4 (OpenAI), ChatGPT version 4.0 (OpenAI), Perplexity (Perplexity.

View Article and Find Full Text PDF

Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.

View Article and Find Full Text PDF

Advances in liver organoids: replicating hepatic complexity for toxicity assessment and disease modeling.

Stem Cell Res Ther

January 2025

Organoid Innovation Center, Suzhou Institute of Nanotech and Nano-bionics, Chinese Academy of Sciences, 398 Ruoshui Rd, Suzhou, Jiangsu, 215123, China.

The lack of in vivo accurate human liver models hinders the investigation of liver-related diseases, injuries, and drug-related toxicity, posing challenges for both basic research and clinical applications. Traditional cellular and animal models, while widely used, have significant limitations in replicating the liver's complex responses to various stressors. Liver organoids derived from human pluripotent stem cells, adult stem cells primary cells, or tissues can mimic diverse liver cell types, major physiological functions, and architectural features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!