Clonal transmission and horizontal gene transfer (HGT) contribute to the spread of vancomycin-resistant enterococci (VRE) in global healthcare. Our study investigated vesiduction, a HGT mechanism via membrane vesicles (MVs), for vanA and vanB genes that determine vancomycin resistance. We isolated MVs for VRE of different sequence types (STs) and analysed them by nanoparticle tracking analysis. Selected MV samples were subjected to DNA sequence analysis. In resistance transfer experiments, vancomycin-susceptible enterococci were exposed to MVs and bacterial supernatants of VRE. Compared to bacteria grown in lysogeny broth (MVs/LB), cultivation under vancomycin stress (MVs/VAN) resulted in increased particle concentrations of up to 139-fold (ST80). As a key finding, we could show that VRE isolates of ST80 and ST117 produced remarkably more vesicles at subinhibitory antibiotic concentrations (approx. 9.2 × 10 particles/ml for ST80 and 2.4 × 10 particles/ml for ST117) than enterococci of other STs (range between 1.8 × 10 and 5.3 × 10 particles/ml). In those MV samples, the respective resistance genes vanA and vanB were completely verifiable using sequence analysis. Nevertheless, no vancomycin resistance transfer via MVs to vancomycin-susceptible Enterococcus faecium was phenotypically detectable. However, our results outline the potential of future research on ST-specific MV properties, promising new insights into VRE mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803344PMC
http://dx.doi.org/10.1038/s41598-024-52310-1DOI Listing

Publication Analysis

Top Keywords

vancomycin resistance
12
membrane vesicles
8
enterococcus faecium
8
vana vanb
8
sequence analysis
8
resistance transfer
8
resistance
5
vre
5
role membrane
4
vesicles transmission
4

Similar Publications

Background: is a significant cause of healthcare-associated infections, with rising antimicrobial resistance complicating treatment. This study offers a genomic analysis of , focusing on sequence types (STs), global distribution, antibiotic resistance genes, and virulence factors in its chromosomal and plasmid DNA.

Methods: A total of 19,711 genomes were retrieved from GenBank.

View Article and Find Full Text PDF

Background: The excessive use of antibiotics is a major contributor to the global issue of antimicrobial resistance (AMR), a significant threat to human and animal health. Hence, assessing new strategies for managing Multi-Drug Resistant (MDR) microorganisms is vital. In this study, the use of mechanically isolated mature adipose cells (MIMACs) and their lysate (Adipolysate) as a new sustainable antimicrobial agent was assessed against Methicillin-resistant Staphylococcus aureus (MRSA).

View Article and Find Full Text PDF

A benzoxazolyl urea inhibits VraS and enhances antimicrobials against vancomycin intermediate-resistant Staphylococcus aureus.

Bioorg Med Chem Lett

January 2025

Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, USA; Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA. Electronic address:

Vancomycin intermediate-resistant Staphylococcus aureus (VISA) is a pathogen of concern. VraS, a histidine kinase, facilitates the VISA phenotype. Here, we reveal a benzoxazolyl urea (chemical 1) that directly inhibits VraS and enhances vancomycin to below the clinical breakpoint against an archetypal VISA strain, Mu50.

View Article and Find Full Text PDF

Vancomycin-Resistant Enterococcus faecium: A current perspective on resilience, adaptation, and the urgent need for novel strategies.

J Glob Antimicrob Resist

January 2025

UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Instituto Universitário de Ciências da Saúde (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal. Electronic address:

Vancomycin-resistant Enterococcus faecium (VREfm) has become a critical opportunistic pathogen, urgently requiring new antimicrobial strategies due to its rising prevalence and significant impact on patient safety and healthcare costs. VREfm continues to evolve through mutations and the acquisition of new genes via horizontal gene transfer, contributing to resistance against several last-resort antibiotics. Although primarily hospital-associated, VREfm is also detected in the community, food chain, livestock, and environmental sources like wastewater, indicating diverse transmission pathways and the need for a One Health approach.

View Article and Find Full Text PDF

Agricultural practices, specifically the use of antibiotics and other biocides, have repercussions on human, animal and plant health. The aim of this study was to evaluate the levels of Enterobacteriaceae and Enterococcus, as antibiotic resistant marker bacteria, in various matrices across the agro-ecosystem of an antibiotic-free swine farm in Quebec (Canada), namely pig feed, feces, manure, agricultural soil, water and sediment from a crossing stream, and soil from nearby forests. Samples were collected in fall 2022, spring and fall 2023 and spring 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!