This paper studies the possibility of connecting Wind Farms (WF) to the electric grid with the use of finite space model predictive command (FS-MPC) to manage wind farms to improve the quality of the current output from the doubly-fed induction generator (DFIG) with considering fault ride-through technique. This proposed system can generate active power and enhance the power factor. Furthermore, the reduction of harmonics resulting from the connection of non-linear loads to the electrical grid is achieved through the self-active filtering mechanism in DFIGs-WF, facilitated by the now algorithm proposed. FS-MPC technique has the ability to improve system characteristics and greatly reduce active power ripples. Therefore, MATLAB software is used to implement and verify the safety, performance, and effectiveness of this designed technique compared to the conventional strategy. The results obtained demonstrated the effectiveness of the proposed algorithm in handling the four operational modes (Maximum power point tracking, Delta, Fault, and Filtering). Additionally, the suggested technique exhibited flexibility, robustness, high accuracy, and fast dynamic response when compared to conventional strategies and some recently published scientific works. On the other hand, the THD value of the current was significantly reduced, obtaining at one test time the values 56.87% and 0.32% before and after filtering, respectively 27.50% and 0.26% at another time of testing, resulting in an estimated THD reduction percentage of 99.43% and 99.05%, respectively. These high percentages prove that the quality of the stream is excellent after applying the proposed strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226680 | PMC |
http://dx.doi.org/10.1038/s41598-023-51110-3 | DOI Listing |
Sci Rep
December 2024
Electrical Engineering Department, Faculty of Engineering, South Valley University, Qena, 83523, Egypt.
Low Voltage Ride Through (LVRT) is considered one of the main and serious problems facing the electrical grid. It occurs due to three-phase symmetric faults and asymmetric faults such as a double line to ground fault that applies in this system. This paper applies Static Synchronous Compensators (STATCOM) to improve the LVRT capability and dynamic performance of an electrical grid linked to a Photovoltaic (PV)/Wind hybrid system through grid disturbances.
View Article and Find Full Text PDFTo solve the problem of oscillation instability in permanent magnetic synchronous generator (PMSG)-based wind power connected systems during low-voltage ride through (LVRT) process, a parameter adjustment strategy based on interaction energy path optimization is proposed in this paper. Firstly, a modular state-space model of PMSG under fault transient conditions is constructed, and the system is divided into five subsystems. Then, the dynamic energy function of subsystems reflecting the oscillation stability of the system is derived.
View Article and Find Full Text PDFSensors (Basel)
May 2024
Siemens AG, 13599 Berlin, Germany.
The electrical protection of power networks with fault contribution from inverter-based power sources imposes new application challenges that have to be dealt with by protection engineers. This paper describes the development of a study case model of an HVDC-MMC link for testing the protection behaviour of connected converter transformers. The paper summarises the implementation and validation of the converter control as well as enhancements to provide Fault Ride-Through capability and fast fault current injection as required by the German Technical Connection Rules for HVDC.
View Article and Find Full Text PDFHeliyon
March 2024
Department of Engineering, Durham University, DH1 3LE, Durham, United Kingdom.
Short circuit faults are a prevalent issue in power systems, causing disruptions to the grid's normal operation. Dynamic behaviours of the conventional power systems during short circuit faults have been extensively studied and understood. The bulk of ongoing research and development are focusing on the dynamic performance of grid-connected renewable energy systems under these fault conditions, due to changes in the grid code and a decrease in system inertia.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2024
Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt.
Photovoltaic (PV) systems are becoming essential to our energy landscape as renewable energy sources become more widely integrated into power networks. Preserving grid stability, especially during voltage sags, is one of the significant difficulties confronting the implementation of these technologies. This attribute is referred to as low-voltage ride-through (LVRT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!