In this study, we have synthesized a bioactive glass with composition 45SiO-20NaO-23CaO-6PO-2.5BO-1ZnO-2MgO-0.5CaF (wt %). Further, it has been incorporated with 0.4 wt % iron carbide nanoparticles to prepare magnetic bioactive glass (MBG) with good heat generation capability for potential applications in magnetic field-assisted hyperthermia. The MBG scaffolds have been fabricated using extrusion-based additive manufacturing by mixing MBG powder with 25% Pluronic F-127 solution as the binder. The saturation magnetization of iron carbide nanoparticles in the bioactive glass matrix has been found to be 80 emu/g. The morphological analysis (pore size distribution, porosity, open pore network modeling, tortuosity, and pore interconnectivity) was done using an in-house developed methodology that revealed the suitability of the scaffolds for bone tissue engineering. The compressive strength (14.3 ± 1.6 MPa) of the MBG scaffold was within the range of trabecular bone. The in vitro test using simulated body fluid (SBF) showed the formation of apatite indicating the bioactive nature of scaffolds. Further, the drug delivery behaviors of uncoated and polycaprolactone (PCL) coated MBG scaffolds have been evaluated by loading an anticancer drug (Mitomycin C) onto the scaffolds. While the uncoated scaffold demonstrated the drug's burst release for the initial 80 h, the PCL-coated scaffold showed the gradual release of the drug. These results demonstrate the potential of the proposed MBG for bone tissue engineering and drug delivery applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.3c00931DOI Listing

Publication Analysis

Top Keywords

bioactive glass
16
iron carbide
12
bone tissue
12
tissue engineering
12
drug delivery
12
additive manufacturing
8
scaffolds bone
8
engineering drug
8
delivery applications
8
carbide nanoparticles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!