This study set out to formulate antibacterial and antioxidant gelatin boosted by cinnamaldehyde for combating multi-drug resistant bacteria previously obtained from chronic wounds. Towards this end, gelatin amine groups were conjugated with carbonyl groups of cinnamaldehyde, producing cinnamyl-gelatin Schiff bases. The physicochemical attributes of cinnamyl-gelatin Schiff bases were probed concerning alterations in chemical structures and microstructures compared to native gelatin. Besides, cinnamyl-gelatin Schiff bases exhibited higher thermal stability than gelatin, with a diminishing in solubility due to increases in hydrophobicity features. Interestingly, cinnamyl-gelatin derivatives exerted antibacterial activities versus multi-drug resistant Gram-negative and Gram-positive bacteria, showing maximum growth inhibition at the highest concentration of cinnamaldehyde incorporated into gelatin. The scavenging activities of gelatin against DPPH and ABTS were promoted in cinnamyl-gelatin derivatives from 11.93 ± 0.6 % to 49.9 ± 2.5 % and 12.54 ± 0.63 % to 49.9 ± 3.12 %, respectively. Remarkably, cinnamyl-gelatin derivatives induced the proliferation of fibroblast cells, implying their prospective applications in tissue engineering. Molecular docking and pharmacokinetic investigations disclosed the potential antibacterial mechanisms of cinnamyl-gelatin derivatives alongside their biopharmaceutical applications. Altogether, these findings suggest that cinnamyl-gelatin derivatives could be utilized to tailor antibacterial-free antibiotics and antioxidant wound dressings against virulent bacteria to promote chronic wound recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2024.123827 | DOI Listing |
Int J Pharm
March 2024
Polymer Materials Research Department, Advanced Technologies, and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt. Electronic address:
This study set out to formulate antibacterial and antioxidant gelatin boosted by cinnamaldehyde for combating multi-drug resistant bacteria previously obtained from chronic wounds. Towards this end, gelatin amine groups were conjugated with carbonyl groups of cinnamaldehyde, producing cinnamyl-gelatin Schiff bases. The physicochemical attributes of cinnamyl-gelatin Schiff bases were probed concerning alterations in chemical structures and microstructures compared to native gelatin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!