Frequent oceanic oil spill incidents and the discharge of industrial oily wastewaters have caused serious threats to environments, food chains and human beings. Lignin wastes with many reactive groups exist as the byproducts from bioethanol and pulping processing industries, and they are either discarded as wastes or directly consumed as a fuel. To make full use of lignin wastes and simultaneously deal with oily wastewaters, porous lignin-based composites have been rationally designed and prepared. In this review, recent advances in the preparation of porous lignin-based composites are summarized in terms of aerogels, sponges, foams, papers, and membranes, respectively. Then, the mechanisms and the application of porous lignin-based adsorbents and filtration materials for oil/water separation are discussed. Finally, the challenges and perspectives of porous lignin-based composites are proposed in the field of oil/water separation. The utilization of abundant lignin wastes can replace fossil resources, and meanwhile porous lignin-based composites can be used to efficiently treat with oily wastewaters. The above utilization strategy opens an avenue to the rational design and preparation of lignin wastes with high-added value, and gives a possible solution to use lignin wastes in a sustainable and environmentally friendly way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.129569 | DOI Listing |
Int J Biol Macromol
January 2025
Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
Lignin-based porous carbon, a derivative of lignin, is acknowledged for its cost-effectiveness, stability, and environmental sustainability. It exhibits significant adsorption capacity for the removal of heavy metals and in wastewater treatment, rendering it a highly esteemed adsorbent material. However, the potential of lignin-derived porous carbon for the capture of iodine in environmental contexts has yet to be thoroughly investigated.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
Secondary salinisation significantly compromises soil quality because of the over-application of chemical fertilisers. The combined application of biochar and microorganisms enhanced soil physicochemical properties and improved soil remediation efficiency. However, different types of biochar had varying effects on microbial growth and reproduction.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China.
A lignin-based Fe/N co-doped carbonaceous catalyst was synthesized via freeze-drying followed by pyrolysis to activate peroxymonosulfate (PMS) for efficient degradation of bisphenol A (BPA). The Fe/N co-doped biochar exhibited a high specific surface area (364.84 m/g), hierarchical porous structures, and abundant oxygen-containing functional groups (hydroxyl and carboxyl groups), which enhancing the dispersion of FeO nanoparticle and exposure of catalytic site.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
The safety of nuclear energy, as a low-carbon energy source, has received widespread attention. One of the concerns is the appropriate handling of volatile radioactive elements (e.g.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
A major driver of global climate change is the rising concentration of atmospheric CO, the mitigation of which requires the development of efficient and sustainable carbon capture technologies. Solid porous adsorbents have emerged as promising alternatives to liquid amine counterparts due to their potential to reduce regeneration costs. Among them, porous carbons stand out for their high surface area, tailorable pore structure, and exceptional thermal and mechanical properties, making them highly robust and efficient in cycling operations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!