3,5-Disubstituted-thiazolidine-2,4-dione hybrids as antidiabetic agents: Design, synthesis, in-vitro and In vivo evaluation.

Eur J Med Chem

Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, Punjab, India, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, India). Electronic address:

Published: February 2024

Diabetes is one of the fastest-growing metabolic disorders, nearly doubling the number of patients each year. There are different treatment approaches available for the management of diabetes, which lacks due to their side effects. The inhibition of enzymes involved in the metabolism of complex polysaccharides to monosaccharides has proven beneficial in patients with type 2 diabetes mellitus. Two enzymes, α-amylase and α-glucosidase, have emerged as potential drug targets and are widely explored for drug development against type 2 diabetes mellitus. In this context, thiazolidine-2,4-diones (TZDs) have emerged as potential drug candidates for developing newer molecules against α-amylase and α-glucosidase. Nineteen TZD-hybrids were synthesized and evaluated in vitro α-amylase and α-glucosidase inhibitory activity. The compounds 7i, 7k, and 7p have emerged as the best dual inhibitors with IC of 10.33 ± 0.11-20.94 ± 0.76 μM and 10.19 ± 0.25-24.07 ± 1.56 μM against α-glucosidase and α-amylase, respectively. The derivatives had good anti-oxidant activity, displaying IC = 14.95 ± 0.65-23.27 ± 0.99 μM. The compounds 7k and 7p showed the best inhibition of reactive oxygen species in the PNAC-1 cells. The molecules exhibit good binding within the active site of α-amylase (PDB id: 1B2Y) and α-glucosidase (PDB id: 3W37), displaying binding energies of -7.5 to -10.7 kcal/mol and -7.4 to -10.3 kcal/mol, respectively. Further, the compounds were nontoxic (LD = 500-1311 mg/kg) and possessed good GI absorption. The compounds 7i, 7k, and 7p were evaluated in vivo antidiabetic activity in an STZ-induced diabetic model in Wistar rats. The compound 7p emerged as the best compound in the in vivo studies; however, the activity was lesser than that of the standard drug pioglitazone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2024.116139DOI Listing

Publication Analysis

Top Keywords

α-amylase α-glucosidase
12
type diabetes
8
diabetes mellitus
8
emerged potential
8
potential drug
8
emerged best
8
α-amylase
5
α-glucosidase
5
35-disubstituted-thiazolidine-24-dione hybrids
4
hybrids antidiabetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!