Complex localization mechanisms in networks of coupled oscillators: Two case studies.

Chaos

Department of Mathematics and Statistics, Concordia University, Montréal, Quebec H3G 1M8, Canada.

Published: January 2024

Localized phenomena abound in nature and throughout the physical sciences. Some universal mechanisms for localization have been characterized, such as in the snaking bifurcations of localized steady states in pattern-forming partial differential equations. While much of this understanding has been targeted at steady states, recent studies have noted complex dynamical localization phenomena in systems of coupled oscillators. These localized states can come in the form of symmetry-breaking chimera patterns that exhibit coexistence of coherence and incoherence in symmetric networks of coupled oscillators and gap solitons emerging in the bandgap of parametrically driven networks of oscillators. Here, we report detailed numerical continuations of localized time-periodic states in systems of coupled oscillators, while also documenting the numerous bifurcations they give way to. We find novel routes to localization involving bifurcations of heteroclinic cycles in networks of Janus oscillators and strange bifurcation diagrams resembling chaotic tangles in a parametrically driven array of coupled pendula. We highlight the important role of discrete symmetries and the symmetric branch points that emerge in symmetric models.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0174550DOI Listing

Publication Analysis

Top Keywords

coupled oscillators
16
networks coupled
8
steady states
8
systems coupled
8
parametrically driven
8
oscillators
6
coupled
5
complex localization
4
localization mechanisms
4
networks
4

Similar Publications

An electromagnetic vibration energy harvester with a 2:1:2 internal resonance (IR) is proposed, allowing for the simultaneous activation of two IRs within the system in order to enhance its performance in terms of bandwidth and harvested power. The device consists of three magnetically coupled oscillators separated by an adjustable gap to tune the system eigenfrequencies and achieve a 2:1:2 IR. Numerical investigations are conducted to predict the behavior of the proposed device, and a multi-objective optimization procedure is employed to enhance the harvester's performance by introducing mass perturbations.

View Article and Find Full Text PDF

Dissipation Alters Modes of Information Encoding in Small Quantum Reservoirs near Criticality.

Entropy (Basel)

January 2025

Chula Intelligent and Complex Systems Lab, Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

Quantum reservoir computing (QRC) has emerged as a promising paradigm for harnessing near-term quantum devices to tackle temporal machine learning tasks. Yet, identifying the mechanisms that underlie enhanced performance remains challenging, particularly in many-body open systems where nonlinear interactions and dissipation intertwine in complex ways. Here, we investigate a minimal model of a driven-dissipative quantum reservoir described by two coupled Kerr-nonlinear oscillators, an experimentally realizable platform that features controllable coupling, intrinsic nonlinearity, and tunable photon loss.

View Article and Find Full Text PDF

The Group-Algebraic Formalism of Quantum Probability and Its Applications in Quantum Statistical Mechanics.

Entropy (Basel)

January 2025

Department of Physics and Fujian Provincial Key Laboratory of Low Dimensional Condensed Matter Physics, Xiamen University, Xiamen 361005, China.

We show that the theory of quantum statistical mechanics is a special model in the framework of the quantum probability theory developed by mathematicians, by extending the characteristic function in the classical probability theory to the quantum probability theory. As dynamical variables of a quantum system must respect certain commutation relations, we take the group generated by a Lie algebra constructed with these commutation relations as the bridge, so that the classical characteristic function defined in a Euclidean space is transformed to a normalized, non-negative definite function defined in this group. Indeed, on the quantum side, this group-theoretical characteristic function is equivalent to the density matrix; hence, it can be adopted to represent the state of a quantum ensemble.

View Article and Find Full Text PDF

Two-dimensional (2D) vibrational spectroscopy is a powerful means of investigating the structure and dynamics of complex molecules in condensed phases. However, even in theory, analysis of 2D spectra resulting from complex inter- and intra-molecular motions using only molecular dynamics methods is not easy. This is because molecular motions comprise complex multiple modes and peaks broaden and overlap owing to various relaxation processes and inhomogeneous broadening.

View Article and Find Full Text PDF

Direct interactions between quantum particles naturally fall off with distance. However, future quantum computing architectures are likely to require interaction mechanisms between qubits across a range of length scales. In this work, we demonstrate a coherent interaction between two semiconductor spin qubits 250 μm apart using a superconducting resonator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!