Biochar, a waste biomass-derived adsorbent, holds promise for decentralised wastewater treatment. However, limited research exists on its efficacy in adsorbing anionic surfactants in wastewater. To address this, the adsorption of sodium dodecyl sulphate (SDS), a common anionic surfactant, was studied using various biochar types: rice husk biochar (RH-550 and RH-700), wheat straw biochar (WS-550 and WS-700) produced at 550°C and 700°C, wood-based biochar (OB), and activated carbon (AC) as a control. The study investigated the impact of pH (3-9), adsorbent loading (1-10 g/L), adsorbent size (<0.5-2.5 mm), contact time (5-180 min), and initial concentration (50-200 mg/L) on SDS removal. Under optimised conditions (100 mg/L SDS, 4 g/L adsorbent, 1-2 mm particle size, pH 8.3, and 180 min contact time), maximum SDS removals were RH-550 (78%), RH-700 (82.4%), WS-550 (89.5%), WS-700 (90.4%), AC (97%), and OB (88.4%). Among the tested adsorbent materials, WS-550 exhibited the highest SDS adsorption capacity at 66.23 mg/g compared to AC (80.65 mg/g), followed by RH-550 (49.75 mg/g), OB (45.87 mg/g), RH-700 (43.67 mg/g), and WS-700 (42.74 mg/g). SDS adsorption followed a pseudo-second-order kinetic model, indicating chemisorption on the adsorbent surface. The Freundlich isotherm model exhibited a better fit for the experimental data on SDS adsorption using all tested adsorbents except for RH-550. This study showed that biochars produced from agricultural and forestry residues are effective adsorbents for SDS in aqueous solutions and can be a promising sustainable and low-cost material for the treatment of greywater containing anionic surfactants (e.g. handwashing, laundry, kitchen, and bathroom greywaters).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2024.2304677 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering and Environmental Technology, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D, 50018 Zaragoza, Spain.
The emergence of green chemistry and engineering principles to enforce sustainability aspects has ensured the prevalence of green solvents and green processes. Our study addresses this quest by exploring drug delivery applications of hydrophobic deep eutectic solvents (DESs) which are alternative green solvents. Initially, this work showcases the hydrophobic drug solubilization capabilities of a natural hydrophobic DES, menthol, and decanoic acid.
View Article and Find Full Text PDFJ Oral Sci
January 2025
Department of Conservative Dentistry, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University.
Purpose: This study investigated the synergistic effects of reduced graphene oxide (RGO) on the antibacterial activity of three calcium hydroxide-based intracanal medicaments with different vehicles.
Methods: Multispecies biofilms were cultured in a bovine root canal model. Intracanal medicaments containing nonaqueous vehicles, including N-methyl-2-pyrrolidone (NMP; CleaniCal), propylene glycol (PG; UltraCal XS), and polyethylene glycol (PEG; Calcipex II), were placed in the model.
Int J Biol Macromol
January 2025
School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
Substantial amounts of oily wastewater are inevitably generated during petroleum extraction and petrochemical production, and the effective treatment of these O/W emulsions is crucial for environmental protection and resource recovery. The development of an environmentally friendly, cost-effective, and efficient demulsifier that operates effectively at low concentrations remains a significant challenge. This study introduces an eco-friendly ionic liquid demulsifier, Cotton Cellulose-Dodecylamine (CCDA), which demonstrates exceptional demulsification performance at low concentrations.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12 Str., 80-233, Gdansk, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:
Advanced Oxidation Processes (AOPs) have proven to be an effective solution for chemical wastewater treatment, particularly for degradation of organic pollutants, especially dyes. Ozonation is recognized as one of the most prevalent AOPs. Nevertheless, some cases show a lowered efficiency of O utilization which is attributed to its inadequate distribution in the treated water causing low residence time, low mass transfer coefficient as well as shorter half-life.
View Article and Find Full Text PDFJ Bone Joint Surg Am
January 2025
Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, NY.
Background: Antiseptic solutions are commonly utilized during total joint arthroplasty (TJA) to prevent and treat periprosthetic joint infection (PJI). The purpose of this study was to investigate which antiseptic solution is most effective against methicillin-sensitive Staphylococcus aureus (MSSA) and Escherichia coli biofilms established in vitro on orthopaedic surfaces commonly utilized in total knee arthroplasty: cobalt-chromium (CC), oxidized zirconium (OxZr), and polymethylmethacrylate (PMMA).
Methods: MSSA and E.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!