Melanoma is a highly malignant skin cancer. This study aimed to investigate the role of long non-coding RNA MIR205 host gene (lncRNA MIR205HG) in proliferation, invasion, and migration of melanoma cells via jumonji domain containing 2C (JMJD2C) and ALKB homolog 5 (ALKBH5). Real-time quantitative polymerase chain reaction or Western blot assay showed that MIR205HG, JMJD2C, and ALKBH5 were increased in melanoma cell lines. Cell counting kit-8, colony formation, and Transwell assays showed that silencing MIR205HG inhibited proliferation, invasion, and migration of melanoma cells. RNA immunoprecipitation, actinomycin D treatment, and chromatin immunoprecipitation showed that MIR205HG may bind to human antigen R (HuR, ELAVL1) and stabilized JMJD2C expression, and JMJD2C may increase the enrichment of H3K9me3 in the ALKBH5 promotor region to promote ALKBH5 transcription. The tumor xenograft assay based on subcutaneous injection of sh-MIR205HG-treated melanoma cells showed that silencing MIR205HG suppressed tumor growth and reduced Ki67 positive rate by inactivating the JMJD2C/ALKBH5 axis. Generally, MIR205HG facilitated proliferation, invasion, and migration of melanoma cells through HuR-mediated stabilization of JMJD2C and increasing ALKBH5 transcription by erasing H3K9me3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10802967PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0290986PLOS

Publication Analysis

Top Keywords

melanoma cells
20
proliferation invasion
16
invasion migration
16
migration melanoma
16
lncrna mir205hg
8
mir205hg proliferation
8
jmjd2c/alkbh5 axis
8
silencing mir205hg
8
alkbh5 transcription
8
mir205hg
7

Similar Publications

Therapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.

View Article and Find Full Text PDF

Cutaneous melanoma is the deadliest form of skin cancer. Despite advancements in treatment, many patients still face poor outcomes. A deeper understanding of the mechanisms involved in melanoma pathogenesis is crucial for improving diagnosis and therapy.

View Article and Find Full Text PDF

Thousands of regulatory noncoding RNAs (ncRNAs) have been annotated; however, their functions in gene regulation and contributions to cancer formation remain poorly understood. To gain a better understanding of the influence of ncRNAs on gene regulation during melanoma progression, we mapped the landscape of ncRNAs in melanocytes and melanoma cells. Nearly half of deregulated genes in melanoma are ncRNAs, with antisense RNAs (asRNAs) comprising a large portion of deregulated ncRNAs.

View Article and Find Full Text PDF

Recent studies indicate that the development of drug resistance and increased invasiveness in melanoma is largely driven by transcriptional plasticity rather than canonical coding mutations. Understanding the mechanisms behind cell identity shifts in oncogenic transformation and cancer progression is crucial for advancing our understanding of melanoma and other aggressive cancers. While distinct melanoma phenotypic states have been well characterized, the processes and transcriptional controls that enable cells to shift between these states remain largely unknown.

View Article and Find Full Text PDF

Ultraviolet (UV)-induced DNA mutations produce genetic drivers of cutaneous melanoma initiation and numerous neoantigens that can trigger anti-tumor immune responses in the host. Consequently, melanoma cells must rapidly evolve to evade immune detection by simultaneously modulating cell-autonomous epigenetic mechanisms and tumor-microenvironment interactions. Angiogenesis has been implicated in this process; although an increase of vasculature initiates the immune response in normal tissue, solid tumors manage to somehow enhance blood flow while preventing immune cell infiltration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!