Deciphering agr quorum sensing in Staphylococcus aureus: insights and therapeutic prospects.

Mol Biol Rep

School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Published: January 2024

The emergence of superbugs like methicillin-resistant Staphylococcus aureus exposed the limitations of treating microbial infections using antibiotics. At present, the discovery of novel and convincing therapeutic methods are being executed increasingly as possible substitutes to conventional antibiotic therapies. The quorum sensing helps Staphylococcus aureus become more viable through their signaling mechanisms. In recent years, targeting the prominent factors of quorum sensing has obtained remarkable attention as a futuristic approach to dealing with bacterial pathogenicity. The standard antibiotic therapy intends to inhibit the organism by targeting specific molecules and afford a chance for the evolution of antibiotic resistance. This prompts the development of novel therapeutic strategies like inhibiting quorum sensing that can limit bacterial virulence by decreasing the selective pressure, thereby restricting antibiotic resistance evolution. This review furnishes new insights into the accessory gene regulator quorum sensing in Staphylococcus aureus and its inhibition by targeting the genes that regulate the operon. Further, this review comprehensively explores the inhibitors reported up to date and their specific targets and discusses their potentially ineffective alternative therapy against methicillin-resistant Staphylococcus aureus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-023-08930-3DOI Listing

Publication Analysis

Top Keywords

quorum sensing
20
staphylococcus aureus
20
sensing staphylococcus
8
methicillin-resistant staphylococcus
8
antibiotic resistance
8
quorum
5
sensing
5
staphylococcus
5
aureus
5
deciphering agr
4

Similar Publications

Plant-microbe partnerships constitute a complex and intricately woven network of connections that have evolved over countless centuries, involving both cooperation and antagonism. In various contexts, plants and microorganisms engage in mutually beneficial partnerships that enhance crop health and maintain balance in ecosystems. However, these associations also render plants susceptible to a range of pathogens.

View Article and Find Full Text PDF

Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.

View Article and Find Full Text PDF

This review discusses the chemical properties, synthesis and detection, and biological functions of a molecular group of cis-2-unsaturated fatty acids, containing fatty acid carbon chains of various lengths and cis double-bond configurations, known as the diffusible signaling factor family (DSFF). Early postulation of the conserved nature of the DSFF among Gram-negative bacteria have now been challenged by the latest evidences that unraveled their presence in a various other distinct microorganisms. Over the last decade, a significant depth and breadth of understanding has been made on the multifaceted functions of DSFFs among bacteria, and their interactions with evolutionarily divergent fungi, plants insects and small animals.

View Article and Find Full Text PDF

Quorum sensing (QS) is a mechanism of intercellular communication that enables microbes to alter gene expression and adapt to the environment. This cell-cell signaling is necessary for intra- and interspecies behaviors such as virulence and biofilm formation. While QS has been extensively studied in bacteria, little is known about cell-cell communication in archaea.

View Article and Find Full Text PDF

Microbial biofilms are universal. The intricate tapestry of biofilms has remarkable implications for the environment, health, and industrial processes. The field of space microbiology is actively investigating the effects of microgravity on microbes, and discoveries are constantly being made.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!