In recent years, different advancements have been observed in nanosized drug delivery systems. Factors such as stability, safety and targeting efficiency cause hindrances in the clinical translation of these synthetic nanocarriers. Therefore, researchers employed endogenous nanocarriers like exosomes as drug delivery vehicles that have an inherent ability to target more efficiently after appropriate functionalization and show higher biocompatibility and less immunogenicity and facilitate penetration through the biological barriers more quickly than the other available carriers. Exosomes are biologically derived lipid bilayer-enclosed nanosized extracellular vesicles (size ranges from 30 to 150 nm) secreted from both prokaryotic and eukaryotic cells and appears significantly in the extracellular space. These EVs (extracellular vesicles) can exist in different sources, including mammals, plants and microorganisms. Different advanced techniques have been introduced for the isolation of exosomes to overcome the existing barriers present with conventional methods. Extensive research on the application of exosomes in therapeutic delivery for treating various diseases related to central nervous system, bone, cancer, skin, etc. has been employed. Several studies are on different stages of clinical trials, and many exosomes patents have been registered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13346-024-01515-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!