A simplified molecularly imprinted ECL sensor based on MnSnO nanocubes for sensitive detection of ribavirin.

Analyst

The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.

Published: February 2024

Conventional single-signal or emerging sandwich-type double-signal electrochemiluminescence (ECL) immunosensors/aptasensors have offered accurate detection of small molecules, yet suffer from complicated setup, long processing time, and non-reusability. Here, we demonstrate a simplified molecularly imprinted ECL sensor based on MnSnO nanocubes. As an n-type semiconductor, MnSnO has numerous active sites that can capture electrons to accelerate chemical reactions, resulting in enhanced ECL activity and stability. For the first time, we verify a robust cathodic ECL emission of MnSnO luminophores in the presence of KSO coreactants. The proposed ECL sensor applies to the sensitive detection of ribavirin (RBV), endowing a wide linear range (1-2000 ng mL), low detection limit (0.85 ng mL, S/N = 3), high stability, specificity, and reproducibility, and the detection capability in real milk and chicken samples. This work highlights single semiconductor luminophore-driven molecularly imprinted ECL sensors, meeting the original aspiration of uncomplicated but high-performance sensing in food safety inspection.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3an02077kDOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
12
imprinted ecl
12
ecl sensor
12
simplified molecularly
8
sensor based
8
based mnsno
8
mnsno nanocubes
8
sensitive detection
8
detection ribavirin
8
ecl
7

Similar Publications

The sensitive Bisphenol A (BPA) detection by an electrochemical sensor based on gold nanoparticle-doped molecularly imprinted polymer was successfully improved. This study describes the development of a method for BPA detection in both aqueous solution and real water samples using N-methacroyl-(L)-cysteine methyl ester and N-methacryloyl-(L)-phenylalanine methyl ester coated pencil graphite electrodes modified with AuNPs by differential pulse voltammetry (DPV). Importantly, AuNPs, which increase the electroactivity, were used to increase the surface area of a BPA-imprinted pencil graphite electrode (MIP PGE) sensor.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a notoriously aggressive primary brain tumor characterized by elevated recurrence rates and poor overall survival despite multimodal treatment. Local treatment strategies for GBM are safer and more effective alternatives to systemic chemotherapy, directly tackling residual cancer cells in the resection cavity by circumventing the blood-brain barrier. Molecularly imprinted polymers (MIPs) are promising drug delivery systems due to their high-affinity binding cavities that enable tailored release kinetics.

View Article and Find Full Text PDF

Development of a Silver-Based MOF Oxidase-Like nanozyme modified with molecularly imprinted polymer for sensitive and selective colorimetric detection of quercetin.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 146., Mohammedia, Morocco. Electronic address:

Antioxidants are vital components in various food, plant, and pharmacological products, making their quantitative, selective, and straightforward assessment essential for evaluating product quality and health benefits. Nanozymes, such as metal-organic frameworks (MOFs) with enzyme-like catalytic activity, hold significant potential for developing highly efficient antioxidant sensing platforms. This is due to their large specific surface area, low density, high porosity, structural diversity, and adjustable pore size.

View Article and Find Full Text PDF

Advancements and prospects of molecularly imprinted polymers as chemical sensors: A comprehensive review.

Talanta

January 2025

Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia; Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.

The scientific literature on molecularly imprinted polymers (MIPs) has grown significantly in the past decades, reflecting an increasing interest in their potential applications. MIPs are valued for their ability to selectively detect a broad range of analytes and mimic biological recognition in different environmental conditions. This review utilises data (Scopus data from 2010 to 2024) from a bibliometric visualisation with VOSviewer (version 1.

View Article and Find Full Text PDF

This study aimed to develop molecularly imprinted polymer (MIP) nanoparticles specifically for the selective extraction and enrichment of progesterone (P) from royal jelly (RJ), and quantitatively analyzed them by ultra-performance-liquid chromatography electrospray ionization mass spectrometry (UPLC-ESI-MS). Gaussian software-based theoretical calculations identified methacrylic acid (MAA) as the optimal functional monomer for its strong binding affinity to P. MIP was synthesized by precipitation polymerization, and the preparation process of MIP was optimized by one-way variance design and response surface methodology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!