Single Ion Pair Is Essential for Stabilizing SHP2's Open Conformation.

Biochemistry

Department of Chemistry and Program in Biochemistry & Biophysics, Amherst College, Amherst, Massachusetts 01002, United States.

Published: February 2024

Src-homology-2-domain-containing PTP-2 (SHP2) is a widely expressed signaling enzyme whose misregulation is associated with multiple human pathologies. SHP2's enzymatic activity is controlled by a conformational equilibrium between its autoinhibited ("closed") state and its activated ("open") state. Although SHP2's closed state has been extensively characterized, the putative structure of its open form has only been revealed in the context of a highly activated mutant (E76K), and no systematic studies of the biochemical determinants of SHP2's open-state stabilization have been reported. To identify amino-acid interactions that are critical for stabilizing SHP2's active state, we carried out a mutagenic study of residues that lie at potentially important interdomain interfaces of the open conformation. The open/closed equilibria of the mutants were evaluated, and we identified several interactions that contribute to the stabilization of SHP2's open state. In particular, our findings establish that an ion pair between glutamate 249 on SHP2's PTP domain and arginine 111 on an interdomain loop is the key determinant of SHP2's open-state stabilization. Mutations that disrupt the R111/E249 ion pair substantially shift SHP2's open/closed equilibrium to the closed state, even compared to wild-type SHP2's basal-state equilibrium, which strongly favors the closed state. To the best of our knowledge, the ion-pair variants uncovered in this study are the first known SHP2 mutants in which autoinhibition is augmented with respect to the wild-type protein. Such "hyperinhibited" mutants may provide useful tools for signaling studies that investigate the connections between SHP2 inhibition and the suppression of human disease progression.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.3c00609DOI Listing

Publication Analysis

Top Keywords

ion pair
12
closed state
12
shp2's
10
stabilizing shp2's
8
shp2's open
8
open conformation
8
shp2's open-state
8
open-state stabilization
8
state
7
single ion
4

Similar Publications

A cooperative model for metallocene catalyst activation by methylaluminoxane.

Dalton Trans

January 2025

Department of Chemistry, University of Eastern Finland, Joensuu Campus, Yliopistokatu 7, FI-80100, Joensuu, Finland.

Activation of rac-MeSi(η-Ind)ZrMe (SBIZrMe) and sheet models for MAO, (MeAlO)(MeAl) (6,4), (MeAlO)(MeAl) (7,5), and (MeAlO)(MeAl) (26,9) was studied DFT. These activators can reversibly form an outer-sphere ion-pair (OSIP) [SBIZrMeAlMe] [(MeAlO)(MeAl)Me] 3 ([,] = [7,4]and [26,8]) or a contact ion-pair (CIP) SBIZrMe-μ-Me-6,4 (2b) from SBIZrMe. Dissociation of MeAl from 3 to form CIP SBIZrMe-μ-Me-, (2) is generally unfavourable but reversible in toluene continuum.

View Article and Find Full Text PDF

The effects of termination functional groups of the TiCT MXene membrane on the structural and dynamics properties of nearby water molecules and foulants are investigated through molecular dynamics simulations. The simulation results show that a much denser water layer can be formed at the vicinity of hydroxyl (OH) termination than that near fluorine (F) or oxygen (O) termination. Particular focus is given to the molecular binding properties of β-d-mannuronic acid (M) and α-l-guluronic acid (G) alginate monomers on the MXene membrane surface with different termination groups.

View Article and Find Full Text PDF

Photoacids undergo an increase in acidity upon electronic excitation, enabling excited-state proton transfer (ESPT) reactions. A multitude of compounds that allow ESPT has been identified and integrated in numerous applications, as is outlined by reviewing the rich history of photoacid research reaching back more than 90 years. In particular, achievements together with ambitions and challenges are highlighted from a combined experimental and theoretical perspective.

View Article and Find Full Text PDF

Distortions in the porphyrin core from planarity can trigger a unique structure-property relationship, imparting its basicity, chemical stability, redox potential, and excited-state energetics, among other properties. The colour change promoted by such distortion is signed by red shifts in its electronic absorption spectra. The adsorption of guest -substituted free-base porphyrin species onto inorganic hosts, such as clay minerals (layered aluminium or magnesium silicates), is known to further promote colour changes.

View Article and Find Full Text PDF

SegRap2023: A benchmark of organs-at-risk and gross tumor volume Segmentation for Radiotherapy Planning of Nasopharyngeal Carcinoma.

Med Image Anal

January 2025

School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China; Shanghai Artificial Intelligence Laboratory, Shanghai, China. Electronic address:

Radiation therapy is a primary and effective treatment strategy for NasoPharyngeal Carcinoma (NPC). The precise delineation of Gross Tumor Volumes (GTVs) and Organs-At-Risk (OARs) is crucial in radiation treatment, directly impacting patient prognosis. Despite that deep learning has achieved remarkable performance on various medical image segmentation tasks, its performance on OARs and GTVs of NPC is still limited, and high-quality benchmark datasets on this task are highly desirable for model development and evaluation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!