Src-homology-2-domain-containing PTP-2 (SHP2) is a widely expressed signaling enzyme whose misregulation is associated with multiple human pathologies. SHP2's enzymatic activity is controlled by a conformational equilibrium between its autoinhibited ("closed") state and its activated ("open") state. Although SHP2's closed state has been extensively characterized, the putative structure of its open form has only been revealed in the context of a highly activated mutant (E76K), and no systematic studies of the biochemical determinants of SHP2's open-state stabilization have been reported. To identify amino-acid interactions that are critical for stabilizing SHP2's active state, we carried out a mutagenic study of residues that lie at potentially important interdomain interfaces of the open conformation. The open/closed equilibria of the mutants were evaluated, and we identified several interactions that contribute to the stabilization of SHP2's open state. In particular, our findings establish that an ion pair between glutamate 249 on SHP2's PTP domain and arginine 111 on an interdomain loop is the key determinant of SHP2's open-state stabilization. Mutations that disrupt the R111/E249 ion pair substantially shift SHP2's open/closed equilibrium to the closed state, even compared to wild-type SHP2's basal-state equilibrium, which strongly favors the closed state. To the best of our knowledge, the ion-pair variants uncovered in this study are the first known SHP2 mutants in which autoinhibition is augmented with respect to the wild-type protein. Such "hyperinhibited" mutants may provide useful tools for signaling studies that investigate the connections between SHP2 inhibition and the suppression of human disease progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.3c00609 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, University of Eastern Finland, Joensuu Campus, Yliopistokatu 7, FI-80100, Joensuu, Finland.
Activation of rac-MeSi(η-Ind)ZrMe (SBIZrMe) and sheet models for MAO, (MeAlO)(MeAl) (6,4), (MeAlO)(MeAl) (7,5), and (MeAlO)(MeAl) (26,9) was studied DFT. These activators can reversibly form an outer-sphere ion-pair (OSIP) [SBIZrMeAlMe] [(MeAlO)(MeAl)Me] 3 ([,] = [7,4]and [26,8]) or a contact ion-pair (CIP) SBIZrMe-μ-Me-6,4 (2b) from SBIZrMe. Dissociation of MeAl from 3 to form CIP SBIZrMe-μ-Me-, (2) is generally unfavourable but reversible in toluene continuum.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States.
The effects of termination functional groups of the TiCT MXene membrane on the structural and dynamics properties of nearby water molecules and foulants are investigated through molecular dynamics simulations. The simulation results show that a much denser water layer can be formed at the vicinity of hydroxyl (OH) termination than that near fluorine (F) or oxygen (O) termination. Particular focus is given to the molecular binding properties of β-d-mannuronic acid (M) and α-l-guluronic acid (G) alginate monomers on the MXene membrane surface with different termination groups.
View Article and Find Full Text PDFChem Sci
December 2024
Institut für Physikalische und Theoretische Chemie, Universität Regensburg 93040 Regensburg Germany +49 941 943 4487.
Photoacids undergo an increase in acidity upon electronic excitation, enabling excited-state proton transfer (ESPT) reactions. A multitude of compounds that allow ESPT has been identified and integrated in numerous applications, as is outlined by reviewing the rich history of photoacid research reaching back more than 90 years. In particular, achievements together with ambitions and challenges are highlighted from a combined experimental and theoretical perspective.
View Article and Find Full Text PDFDalton Trans
January 2025
Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, C. P. 66318, São Paulo, SP, 05508-090, Brazil.
Distortions in the porphyrin core from planarity can trigger a unique structure-property relationship, imparting its basicity, chemical stability, redox potential, and excited-state energetics, among other properties. The colour change promoted by such distortion is signed by red shifts in its electronic absorption spectra. The adsorption of guest -substituted free-base porphyrin species onto inorganic hosts, such as clay minerals (layered aluminium or magnesium silicates), is known to further promote colour changes.
View Article and Find Full Text PDFMed Image Anal
January 2025
School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China; Shanghai Artificial Intelligence Laboratory, Shanghai, China. Electronic address:
Radiation therapy is a primary and effective treatment strategy for NasoPharyngeal Carcinoma (NPC). The precise delineation of Gross Tumor Volumes (GTVs) and Organs-At-Risk (OARs) is crucial in radiation treatment, directly impacting patient prognosis. Despite that deep learning has achieved remarkable performance on various medical image segmentation tasks, its performance on OARs and GTVs of NPC is still limited, and high-quality benchmark datasets on this task are highly desirable for model development and evaluation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!