Although wound healing is a normal physiological process in the human body, it is often impaired by bacterial infections, ischemia, hypoxia, and excess inflammation, which can lead to chronic and non-healing wounds. Recently, injectable hydrogels with controlled nitric oxide (NO) release behaviour have become potential wound healing therapeutic agents due to their excellent biochemical, mechanical, and biological properties. Here, we proposed novel multifunctional NO-releasing hydrogels that could regulate various wound healing processes, including hemostasis, inflammation, cell proliferation and angiogenesis. By incorporating the copper nanoparticles (NPs) in the network of dual enzymatically crosslinked gelatin hydrogels (GH/Cu), NO was produced the Cu-catalyzed decomposition of endogenous RSNOs available in the blood, thus resolving the intrinsic shortcomings of NO therapies, such as the short storage and release time, as well as the burst and uncontrollable release modes. We demonstrated that the NO-releasing gelatin hydrogels enhanced the proliferation and migration of endothelial cells, while promoting the M2 (anti-inflammatory) polarization of the macrophage. Furthermore, the effects of NO release on angiogenesis were evaluated using an tube formation assay and chicken chorioallantoic membrane (CAM) assay, which revealed that GH/Cu hydrogels could significantly facilitate neovascularization, consistent with the results. Therefore, we suggested that these hydrogel systems would significantly enhance the wound healing process through the synergistic effects of the hydrogels and NO, and hence could be used as advanced wound dressing materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3tb01943hDOI Listing

Publication Analysis

Top Keywords

wound healing
20
nitric oxide
8
hydrogels enhanced
8
gelatin hydrogels
8
hydrogels
7
wound
6
healing
5
biocatalytic nitric
4
oxide generating
4
generating hydrogels
4

Similar Publications

[Perioperative management with consumption of alcohol and nicotine in patients with hip and knee arthroplasty].

Orthopadie (Heidelb)

December 2024

Klinik für Orthopädie und Unfallchirurgie, Zentralklinik Bad Berka, Robert-Koch-Allee 9, 99438, Bad Berka, Deutschland.

Excessive consumption of nicotine and alcohol has been proven to effect the organ system. Both stimulants are consumed in the population to a not insignificant extent. The question therefore arises as to what effect the consumption of nicotine and alcohol has on the complication rates and to what extent this should be reduced or stopped before performing a joint arthroplasty? A literature search was carried out to answer these questions.

View Article and Find Full Text PDF

For the first time, critical review on R. Br. (Boraginaceae) is established.

View Article and Find Full Text PDF

Inhibiting angiogenesis with plant-derived bioactive compounds can inhibit tumour progression. Antiangiogenic potential of was analysed by preparing and analysing ethanolic extracts of by GC-MS and HPLC to identify bioactive components. In-vivo blood vessel formation assays in mice and chorioallantoic membrane assays (CAM) in eggs were employed to assess the antiangiogenic effects.

View Article and Find Full Text PDF

Fractional 1064 nm Nd: YAG picosecond lasers for the treatment of traumatic scars: a retrospective study.

Lasers Med Sci

December 2024

Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiangwangmiao Street 12, Xuanwu District, Nanjing, Jiangsu Province, 210042, China.

Traumatic scars negatively impact the patient's quality of life. Fractional 1064 nm Nd: YAG picosecond laser improves scars. However, the effect varies among individuals.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!