Consolidation of Spray-Dried Amorphous Calcium Phosphate by Ultrafast Compression: Chemical and Structural Overview.

Nanomaterials (Basel)

CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France.

Published: January 2024

A large amount of research in orthopedic and maxillofacial domains is dedicated to the development of bioactive 3D scaffolds. This includes the search for highly resorbable compounds, capable of triggering cell activity and favoring bone regeneration. Considering the phosphocalcic nature of bone mineral, these aims can be achieved by the choice of amorphous calcium phosphates (ACPs). Because of their metastable property, these compounds are however to-date seldom used in bulk form. In this work, we used a non-conventional "cold sintering" approach based on ultrafast low-pressure RT compaction to successfully consolidate ACP pellets while preserving their amorphous nature (XRD). Complementary spectroscopic analyses (FTIR, Raman, solid-state NMR) and thermal analyses showed that the starting powder underwent slight physicochemical modifications, with a partial loss of water and local change in the HPO ion environment. The creation of an open porous structure, which is especially adapted for non-load bearing bone defects, was also observed. Moreover, the pellets obtained exhibited sufficient mechanical resistance allowing for manipulation, surgical placement and eventual cutting/reshaping in the operation room. Three-dimensional porous scaffolds of cold-sintered reactive ACP, fabricated through this low-energy, ultrafast consolidation process, show promise toward the development of highly bioactive and tailorable biomaterials for bone regeneration, also permitting combinations with various thermosensitive drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10819566PMC
http://dx.doi.org/10.3390/nano14020152DOI Listing

Publication Analysis

Top Keywords

amorphous calcium
8
bone regeneration
8
consolidation spray-dried
4
spray-dried amorphous
4
calcium phosphate
4
phosphate ultrafast
4
ultrafast compression
4
compression chemical
4
chemical structural
4
structural overview
4

Similar Publications

This paper presents a review of the potential role of the endoplasmic reticulum/Golgi complex and intracellular vesicles in mediating events leading to or associated with vertebrate tissue mineralization. The possible importance of these organelles in this process is suggested by observations that calcium ions accumulate in the tubules and lacunae of the endoplasmic reticulum and Golgi. Similar levels of calcium ions (approaching millimolar) are present in vesicles derived from endosomes, lysosomes and autophagosomes.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the effectiveness of home-use desensitizing agents over an 8-week period by comparing them using different measurement methods.

Methods: A randomized, controlled clinical trial was conducted with 180 individuals aged between 18 and 70 who clinically diagnosed dentin hypersensitivity (DH) in two or more non-adjacent teeth. Subjects who met the inclusion criteria (n = 164) were randomly allocated into five test groups-using Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), Arginine, Novamin, Propolis, and Potassium nitrate-and a control group using standard fluoride toothpaste.

View Article and Find Full Text PDF

Peptide-Ca chelates are innovative calcium supplements. possesses nutritional advantages for preparing calcium-binding peptides (CBPs), although there are limited studies on this subject. Therefore, this paper investigated the optimal condition for preparing CBPs and peptide-calcium chelates (LP-Ca), along with analyzing their microstructure, calcium-binding mechanisms, stability, and calcium transporting efficacy.

View Article and Find Full Text PDF

Magnetotactic bacteria from diverse Pseudomonadota families biomineralize intracellular Ca-carbonate.

ISME J

January 2025

Université Aix-Marseille, CNRS, CEA, UMR7265 Institut de Biosciences and Biotechnologies d'Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France.

Intracellular calcium carbonate formation has long been associated with a single genus of giant Gammaproteobacteria, Achromatium. However, this biomineralization has recently received increasing attention after being observed in photosynthetic Cyanobacteriota and in two families of magnetotactic bacteria affiliated with the Alphaproteobacteria. In the latter group, bacteria form not only intracellular amorphous calcium carbonates into large inclusions that are refringent under the light microscope, but also intracellular ferrimagnetic crystals into organelles called magnetosomes.

View Article and Find Full Text PDF

Dy and Eu co-doped borosilicate glasses have been synthesised via melt quench technique. Amorphous behaviour of the sample has been verified by XRD study. FT-IR analysis confirmed the presence of various bonds in the host lattice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!